• Title/Summary/Keyword: nano plate

Search Result 319, Processing Time 0.028 seconds

Fabrication of uniform micropattern arrays using nonionic surfactant-based wet etching process of high purity aluminum (비이온계 계면활성제기반 고순도 알루미늄 습식식각을 통한 균일한 마이크로패턴 어레이 제작)

  • Jang, Woong-Ki;Jeon, Eun Chae;Choi, Doo Sun;Kim, Byeong Hee;Seo, Young Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.13-20
    • /
    • 2014
  • In this paper, the effects of a nonionic surfactant on the etch uniformity and the etch profile during the wet-etching process of high-purity aluminum were investigated for the fabrication of uniform micropattern arrays. To improve the surface roughness of a high-purity aluminum plate, a mechanical lapping process and an electrolytic polishing process were used. After electrolytic polishing process, the surface roughness, Ra, of the high-purity aluminum plate was improved from $1.25{\mu}m$ to $0.02{\mu}m$. A photoresist was used as an etching mask during the aluminum etching process, where the mixture of phosphoric acid, acetic acid, nitric acid, a nonionic surfactant and water was used as the aluminum etchant. Different amounts of the Triton X-100 nonionic surfactant were added to the aluminum etchant to investigate the effect of a nonionic surfactant during the wet-etching process of high-purity aluminum. The etch rate and the etch profile were measured by an optical interferometer and a scanning electron microscope.

A Study on Selective Transfer and Reflow Process of Micro-LED using Micro Stamp (마이크로 스탬프를 이용한 Micro-LED 개별 전사 및리플로우 공정에 관한 연구)

  • Han, Seung;Yoon, Min-Ah;Kim, Chan;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2022
  • Micro-light emitting diode (micro-LED) displays offer numerous advantages such as high brightness, fast response, and low power consumption. Hence, they are spotlighted as the next-generation display. However, defective LEDs may be created due to non-uniform contact loads or LED alignment errors. Therefore, a repair process involving the replacement of defective LEDs with favorable ones is necessitated. The general repair process involves the removal of defective micro-LEDs, interconnection material transfer, as well as new micro-LED transfer and bonding. However, micro-LEDs are difficult to repair since their size decreases to a few tens of micron in width and less than 10 ㎛ in thickness. The conventional nozzle-type dispenser for fluxes and the conventional vacuum chuck for LEDs are not applicable to the micro-LED repair process. In this study, transfer conditions are determined using a micro stamp for repairing micro-LEDs. Results show that the aging time should be set to within 60 min, based on measuring the aging time of the flux. Additionally, the micro-LEDs are subjected to a compression test, and the result shows that they should be transferred under 18.4 MPa. Finally, the I-V curves of micro-LEDs processed by the laser and hot plate reflows are measured to compare the electrical properties of the micro-LEDs based on the reflow methods. It was confirmed that the micro-LEDs processed by the laser reflow show similar electrical performance with that processed by the hot plate reflow. The results can provide guidance for the repair of micro-LEDs using micro stamps.

Effect of Carbon Filler and Ester Type Binder on the Reactivity and Adhesive Properties with PET Film of Conductive Paste (탄소필러와 에스테르계 바인더가 전도성 페이스트의 반응성 및 PET 필름과의 접착특성에 미치는 영향)

  • Shim, Chang Up;Ku, Hyo Sun;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.381-385
    • /
    • 2022
  • It is very important to secure the adhesion durability between the base film and the conductive paste for the development of a sensor for detecting hazardous chemicals. In this study, an ester binder was used to improve the adhesive properties which can be a problem when applying the sensor to the cross cut 0B or 1B grade. This problem was found while evaluating the adhesive properties by coating the polyaniline/graphene nano plate (GNP) paste on the polyethylene terephthalate (PET) film. When 10 wt% or more of the ester-based binder was added, the cross cut grade to which the sensor can be applied was 3B or higher. It was confirmed that the excessive addition of the binder may affect the electrical properties of the conductive paste and actually decrease the reactivity to sulfuric acid. To improve the electrical property, a carbon black (CB) content was varied resulting in the optimum electrical property observed at 2 wt% of CB.

The effect of thickness on luminous properties of ceramic phosphor plate for high-power LD (고출력 LD 용 형광체 세라믹 플레이트의 두께에 따른 광학 특성)

  • Ji, Eun Kyung;Lee, Chul Woo;Song, Young Hyun;Jeong, Byung Woo;Jung, Mong Kown;Yoon, Dae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.2
    • /
    • pp.80-83
    • /
    • 2016
  • In the present paper, garnet structured $Y_3Al_5O_{12}:Ce^{3+}$ (YAG : Ce) ceramic phosphor plate (CPP) for high power laser diode (LD) was prepared and optical properties were analyzed. We synthesized monodispersed spherical nano-sized YAG : Ce particles by liquid phase method, fabricated phosphor ceramic plate with the addition of $Al_2O_3$. $75{\mu}m$ and $100{\mu}m$ thick YAG : Ce CPPs were compared in terms of the factors of conversion efficacy, thermal quenching, luminance and correlated color temperature (CCT). In conclusion, conversion efficacy decreased by 25 % in both samples and $100{\mu}m$ thick sample provides better optical properties of thermal quenching, maximum light conversion efficacy and maximum luminance value.

Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle

  • Tayeb, Tayeb Si;Zidour, Mohamed;Bensattalah, Tayeb;Heireche, Houari;Benahmed, Abdelillah;Bedia, E.A. Adda
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.135-148
    • /
    • 2020
  • The incorporation of carbon nanotubes in a polymer matrix makes it possible to obtain nanocomposite materials with exceptional properties. It's in this scientific background that this work was based. There are several theories that deal with the behavior of plates, in this research based on the Mindlin-Reissner theory that takes into account the transversal shear effect, for analysis of the critical buckling load of a reinforced polymer plate with parabolic distribution of carbon nanotubes. The equations of the model are derived and the critical loads of linear and parabolic distribution of carbon nanotubes are obtained. With different disposition of nanotubes of carbon in the polymer matrix, the effects of different parameters such as the volume fractions, the plate geometric ratios and the number of modes on the critical load buckling are analysed and discussed. The results show that the critical buckling load of parabolic distribution is larger than the linear distribution. This variation is attributed to the concentration of reinforcement (CNTs) at the top and bottom faces for the X-CNT type which make the plate more rigid against buckling.

Evaluation of Washing Efficiency of Collective PM by Electrostatic Precipitator in Subway Station Using Nano Bubble (나노버블을 이용한 지하철용 전기집진기 포집먼지에 대한 세척효율 평가)

  • Lee, Hyung-Don;Lee, Seung-Hwan;Park, Chan-gyu
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • Air pollutants in a subway are complexly caused by outdoor factors such as ventilating opening and indoor factors such as the movement of passengers on the subway. According to recent research results, most of the air pollutants generated in subway tunnels and stations are caused by indoor variables such as train movement. To control air pollutants such as particulate matter (PM), a prevention facility such as the electrostatic precipitator (EP) or bag filter collector was required in a subway station. In particular, the PM removed by the EP must be kept clean continuously to manage PM effectively. Therefore, a nano-bubbling washing system was developed in this study to clean a contaminated collecting plate in an EP at the main subway tunnel in Seoul. Removal efficiency compared with normal water and nano-bubbling water was likewise studied. As a result, the washing efficiency of collective PM increased in accordance with the increasing of injection pressure, with nano bubbling washing being 130.8% higher than tap water. According to increase in washing times, the maximum washing efficiency was 143.1% higher than tap water, but suitable washing times were less than 3 times. According to the results of the washing efficiency by variation of residence time, it was confirmed that the maximum residence time of nano-bubble water was maintained within 5 minutes.

EFFECT OF THE WATER-WALL INTERACTION POTENTIALS ON THE PROPERTIES OF AQUEOUS SOLUTIONS CONFINED WITHIN A UNIFORMLY CHARGED NANO-CHANNEL

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.368-376
    • /
    • 2009
  • Studies on the effect of the wall-ion, wall-water, water-ion and ion-ion interaction on properties of water and ions in nano-channels have been performed through the use of different kinds of ions or different models of potential energy between wall-ion or wall-water. On this paper, we address the effect of water-wall interaction potential on the properties of confined aqueous solution by using the molecular dynamics (MD) simulations. As the interaction potential energies between water and wall we employed the models of the Weeks-Chandler-Andersen (WCA) and Lennard-Jones (LJ). On the MD simulations, 680 water molecules and 20 ions are included between uniformly charged plates that are separated by 2.6 nm. The water molecules are modeled by using the rigid SPC/E model (simple point charge/Extended) and the ions by the charged Lennard-Jones particle model. We compared the results obtained by using WCA potential with those by LJ potential. We also compared the results (e.g. ion density and electro-static potential distributions) in each of the above cases with those provided by solving the Poisson-Boltzmann equation.

  • PDF

Design and Performance Evaluation of Electrical Impactor for Nano Environmental Aerosols (나노 환경입자 측정용 전기적 임팩터의 설계 및 성능평가)

  • Ji, Jun-Ho;Cho, Myung-Hoon;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1417-1422
    • /
    • 2003
  • An electrical cascade impactor is a multistage impaction device to separate airborne particles into aerodynamic size classes using electrical method. We designed a real-time three-stage electrical low-pressure impactor, which is proper to nanometer sized environmental aerosols. Performance evaluation was carried out for stage 1 and 2. The monodisperse liquid dioctyl sebacate (DOS) particles were generated using condensation-evaporation followed by electrostatic classification using DMA (differential mobility analizer) for particles with diameters in the range of $0.04{\sim}0.8{\mu}m$. The evaluation of the electrical impactor is based on the use of two electrometers, one connected to the impaction plate of the impactor, and the other to the faraday cage as backup filter. The results showed that the experimental 50% cutoff diameters in the operation pressure were 0.53 and $0.12{\mu}m$ for stage 1 and stage 2. The effect of operation pressure on the cutoff diameter and the steepness of collection effcieicy curves is investigated.

  • PDF

A study on Creep of Plate PMMA in Thermal-Nanoindentation Process for Hyperfine pit structure Fabrication (극미세 점 구조체 제작을 위한 열간나노압입 공정에서의 평판형 PMMA의 크립현상에 관한 연구)

  • Lee, E.K.;Jung, Y.N.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.273-276
    • /
    • 2008
  • Thermoplastic resin takes place stress relaxation and creep according to temperature and time. In room temperature, time dependent deformation (TDD) of polymer was carried out at previous study. In this study, it evaluates time dependent deformation to relate temperature. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is important to control pattern depth for change of indent depth by creep when using Nanoindenter. For evaluating TDD at high temperature, it is occurred thermal-nanoindentation test by changing hold time at maximum load. Temperature is putted at $90^{\circ}C$, hold time at maximum loads are putted at 1, 10, 50, 100, 200, 300 and 500s.

  • PDF

Characteristics of the Nd:YAG laser Spot Welding in $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ Bulk Metallic Glass Alloy ($Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ 벌크비정질 합금의 Nd:YAG 레이저 점용접 특성)

  • Kim, J.H.;Lee, J.H.;Shin, S.Y.;Bae, J.C.;Lee, C.H.
    • Laser Solutions
    • /
    • v.8 no.2
    • /
    • pp.13-20
    • /
    • 2005
  • Weldability is largely dependent on the phase evolution and the microstructure of the weld. For the weldability of the $Cu_{54}Ni_6Zr_{22}Ti_{18}$ bulk metallic glass, the crystallization affects the sensitivity of the weld to the brittle failure. In order to suppress the irreversible crystallization, Nd:YAG laser welding was chosen. The pulsed Nd:YAG laser was irradiated onto the BMG plate and the effects of the pulse shape [peak power intensity and pulse duration time] on the crystallinity were evaluated.

  • PDF