Acknowledgement
이 논문은 천안실현기술개발 사업과 환경부의 폐자원에너지화 전문인력 양성사업으로 지원되었습니다.
References
- C. Eyholzer, Dried nanofibrillated cellulose and its bionanocomposites, PhD Dissertation, Lulea University of Technology, Sweden, (2011).
- F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, J. Appl. Polym. Sci.: Appl. Polym. Symp., 37, NY, USA, May 24 (1982).
- S. W. Lee, D. Lee, and B. G. Seo, Sensitive and selective electrochemical glucose biosensor based on a carbon nanotube electronic film, Appl. Chem. Eng., 33, 2022, 188-194 (2022).
- N. Ku, A. Byeon and H. J. Lee, Electrochemical determination of bisphenol A concentrations using nanocomposites featuring multi-walled carbon nanotube, polyelectrolyte and tyrosinase, Appl. Chem. Eng., 32, 684-689 (2021).
- J. Bae, Chemical sensors using polymer/graphene composite and the effect of graphene content on sensor behavior, Appl. Chem. Eng., 31, 25-29 (2020).
- S. B. Sim and J. D. Han, Synthesis of SiO2/Ag core-shell nanoparticles for conductive paste application, Appl. Chem. Eng., 32, 28-34 (2021). https://doi.org/10.14478/ACE.2020.1101
- T. H. Kim, Novel conductive paste based on cellulose acetate butyrate, J. Korean Chem. Soc., 51, 171-177 (2007). https://doi.org/10.5012/JKCS.2007.51.2.171
- J. Vincent, C. Tung, A. R. Koltonow, H. D. Jang, and J. Huang, Graphene oxide based conductive glue as a binder for ultracapacitor electrodes, J. Mater. Chem., 22, 12993-12996 (2012). https://doi.org/10.1039/c2jm30819c
- H. Wu, C. Yang, J. Liu, X. Cui, B. Xie, and Z. Zhang, A highly conductive thermoplastic electrically conductive adhesive for flexible and low cost electronics, 15th Int. Conf. Electro. Pack. Technol., 1544-1546 (2014).
- P. Jezowski and P. L. Kowalczewski, Starch as a green binder for the formulation of conducting glue in supercapacitors, Polymers (Basel). 11, 1648-1660 (2019). https://doi.org/10.3390/polym11101648
- G. H. D. Tonoli, E. M. Teixeira, A. C. Correa, J. M. Marconcini, L. A. Caixeta, M. A. Pereira-da-Silva, and L. H. C. Mattoso, Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties, Carbohydrate Polym., 89, 80-88 (2012). https://doi.org/10.1016/j.carbpol.2012.02.052
- Q. Chen, R. P. Garcia, J. Munoz, U. Perez de Larraya, N. Garmendia, Q. Yao, and A. R. Boccaccini, Cellulose nanocrystals bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: In situ control of mineralization of bioactive glass and enhancement of osteoblastic performance, ACS Appl. Mater. Interfaces, 7, 24715-24725 (2015). https://doi.org/10.1021/acsami.5b07294
- A. Iwatake, M. Nogi, and H. Yano, Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol., 68, 2103-2106 (2008). https://doi.org/10.1016/j.compscitech.2008.03.006
- T. Wang and L. T. Drzal, Cellulose-nanofiber-reinforced poly (lactic acid) composites prepared by a water-based approach, ACS Appl. Mater. Interfaces, 4, 5079-5085 (2012). https://doi.org/10.1021/am301438g
- A. Bhatnagar and M. Sain, Processing of cellulose nanofiber-reinforced composites, J. Reinfor. Plastics Compos., 24, 1259-1268 (2005). https://doi.org/10.1177/0731684405049864
- E. Bilotti, H. Deng, L. Lin, S. M. Zhang, T. Peijs, Q. Fu, and X. Gao (2012), Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions, Exp. Polym. Lett., 6, 159-168 (2011) https://doi.org/10.3144/expresspolymlett.2012.17
- H. Zhang, K. Wang, J. K. Kim, M. Y. Liu, P. C. Ma, S. Q. Wang, and R. Wang, Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black, ACS Appl. Mater. Interfaces, 1, 1090-1096 (2009). https://doi.org/10.1021/am9000503
- K. Schulte, J. Sumfleth, and X. C. Adroher, Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black, J. Mater. Sci., 44, 3241-3247 (2009). https://doi.org/10.1007/s10853-009-3434-7