• Title/Summary/Keyword: nano beam

Search Result 691, Processing Time 0.028 seconds

Effects of HA and TiN Coating on the Electrochemical Characteristics of Ti-6Al-4 V Alloys for Bone Plates

  • Oh, Jae-Wook;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.249-252
    • /
    • 2004
  • Effects of HA and TiN coating on the electrochemical characteristics of Ti-6AI-4V alloys for bone plates were investigated using various test methods. Ti-6AI-4V alloys were fabricated by using a vacuum induction furnace and bone plates were made by laser cutting and polishing. HA was made of extracted tooth sintered and then tooth ash was used as HA coating target. The TiN and HA film coating on the surface were carried on using electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the samples were examined through potentiodynamic method in 0.9% NaCI solutions at $36.5\pm$$1^{\circ}C$ and corrosion surface was observed using SEM and XPS. The surface roughness of TiN coated bone plates was lower than that of tooth ash coated plates. The structure of TiN coated layer showed the columnar structure and tooth ash coated layer showed equiaxed and anisotrophic structure. The corrosion potential of the TiN coated specimen is comparatively high. The active current density of TiN and tooth ash coated alloy showed the range of about $1.0xl0^{-5}$ $A\textrm{cm}^2$, whereas that of the non-coated alloy was$ 1.0xl0^{-4}$ $A\textrm{cm}^2$. The active current densities of HA and TiN coated bone plates were smaller than that of non-coated bone plates in 0.9% NaCl solution. The pitting potential of TiN and HA coated alloy is more drastically increased than that of the non-coated alloy. The pit number and pit size of TiN and HA coated alloy decreased in compared with those of non-coated alloy. For the coated samples, corrosion resistance increased in the order of TiN coated, tooth ash coated, and non-coated alloy.

Study on the Cell Adhesion of Breast Cancer Cells using Nano/Micro Patterning PDMS (나노/마이크로 패턴 PDMS를 이용한 유방암 세포의 부착에 관한 연구)

  • Kwak, Do Hoon;Kim, Woo Cheol;Jin, Hee Won;Yun, Wan Su;Park, Sanghyo;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.165-170
    • /
    • 2019
  • Cancer cells are different from normal cells in terms of life cycle, behavior, and growth patterns. Cancer cells can migrate freely in the body through blood vessels and lymph nodes. The cancer cells easily interact with various substrates including extracellular matrix and vessels and they can differentiate in the new environment. However, it is not well known about the adhesion preference of cancer cells on the substrate and the mechanism of their interaction. In this study, we prepared the nano-, micro-patterned substrates using E-beam lithography techniques. MCF-7 cells were tested on the substrates to find out their adhesion preference. The substrates were made by polydimethylsiloxane (PDMS) with specific patterns including pillars with a diameter of 500 nm, 700 nm, $3{\mu}m$ and $5{\mu}m$. MCF-7 cells were seeded on the substrates and incubated for 24 hours. As a result, this study clearly demonstrated that the MCF-7 cells preferred 700 nm patterning.

Property of Nano-thickness Nickel Silicides with Low Temperature Catalytic CVD (Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드의 물성)

  • Choi, Yongyoon;Kim, Kunil;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • 10 nm thick Ni layers were deposited on 200 nm $SiO_2/Si$ substrates using an e-beam evaporator. Then, 60 nm or 20 nm thick ${\alpha}$-Si:H layers were grown at low temperature (<$200^{\circ}C$) by a Catalytic-CVD. NiSi layers were already formed instantaneously during Cat-CVD process regardless of the thickness of the $\alpha$-Si. The resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness with the additional rapid thermal annealing up to $500^{\circ}C$ were examined using a four point probe, HRXRD, FE-SEM, TEM, AES, and SPM, respectively. The sheet resistance of the NiSi layer was 12${\Omega}$/□ regardless of the thickness of the ${\alpha}$-Si and kept stable even after the additional annealing process. The thickness of the NiSi layer was 30 nm with excellent uniformity and the surface roughness was maintained under 2 nm after the annealing. Accordingly, our result implies that the low temperature Cat-CVD process with proposed films stack sequence may have more advantages than the conventional CVD process for nano scale NiSi applications.

Seismic response of NFRP reinforced RC frame with shape memory alloy components

  • Varkani, Mohamad Motalebi;Bidgoli, Mahmood Rabani;Mazaheri, Hamid
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.285-295
    • /
    • 2022
  • Creation of plastic deformation under seismic loads, is one of the most serious subjects in RC structures with steel bars which reduces the life threatening risks and increases dissipation of energy. Shape memory alloy (SMA) is one of the best choice for the relocating plastic hinges. In a challenge to study the seismic response of concrete moment resisting frame (MRF), this article investigates numerically a new type of concrete frames with nano fiber reinforced polymer (NFRP) and shape memory alloy (SMA) hinges, simultaneously. The NFRP layer is containing carbon nanofibers with agglomeration based on Mori-Tanaka model. The tangential shear deformation (TASDT) is applied for modelling of the structure and the continuity boundary conditions are used for coupling of the motion equations. In SMA connections between beam and columns, since there is phase transformation, hence, the motion equations of the structure are coupled with kinetic equations of phase transformation. The Hernandez-Lagoudas theory is applied for demonstrating of pseudoelastic characteristics of SMA. The corresponding motion equations are solved by differential cubature (DC) and Newmark methods in order to obtain the peak ground acceleration (PGA) and residual drift ratio for MRF-2%. The main impact of this paper is to present the influences of the volume percent and agglomeration of nanofibers, thickness and length of the concrete frame, SMA material and NFRP layer on the PGA and drift ratio. The numerical results revealed that the with increasing the volume percent of nanofibers, the PGA is enhanced and the residual drift ratio is reduced. It is also worth to mention that PGA of concrete frame with NFRP layer containing 2% nanofibers is approximately equal to the concrete frame with steel bars.

A Study on the Thermal Shock Resistance of Sintered Zirconia for Electron Beam Deposition (전자빔 증착을 위한 소결체 지르코니아의 열충격 저항성 연구)

  • Oh, Yoonsuk;Han, Yoonsoo;Chae, Jungmin;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Ahn, Jongkee;Kim, Taehyung;Kim, Donghoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.83-88
    • /
    • 2015
  • Coating materials used in the electron beam (EB) deposition method, which is being studied as one of the fabrication methods of thermal barrier coating, are exposed to high power electron beam at focused area during the EB deposition. Therefore the coating source for EB process is needed to form as ingot with appropriate density and microstructure to sustain their shape and stable melts status during EB deposition. In this study, we tried to find the optimum powder condition for fabrication of ingot of 8 wt% yttria stabilized zirconia which can be used for EB irradiation. It seems that the ingot, which is fabricated through bi-modal type initial powder mixture which consists of tens of micro and nano size particles, was shown better performance than the ingot which is fabricated using monolithic nanoscale powder when exposed to high power EB.

Enhanced Electrochromic Switching Performance in Nickel Hydroxide Thin Film by Ultra-Thin Ni Metal (니켈금속 박막에서 수산화 니켈 박막의 전기변색속도 개선)

  • Kim, Woo-Seong;Seong, Jeong-Sub
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.163-167
    • /
    • 2002
  • Improved optical switching property of electrochromic nickel hydroxide/nickel glass thin film is reported. Nickel metal film was deposited on glass by e-beam evaporation before following electrochemical redox cycling to form nickel hydroxide for electrochromic activation. Without ITO (indium tin oxide) layer as electrical conductor, this electrode showed more rapid coloration rate than nickel hydroxide film on ITO substrate in the change of the electric voltage and optical transmittance. XPS analysis confirmed the existence of ultra-thin nickel metal layer (${\sim}10{\AA}$) between electrochemically grown nickel hydroxide and the glass substrate. It is concluded that the remained nickel metal nano-layer attribute to the conduction layer and the enhanced response time.

  • PDF

Mechanical Properties of High Stressed Silicon Nitride Beam Measured by Quasi-static and Dynamic Techniques

  • Shin, Dong Hoon;Kim, Hakseong;McAllister, Kirstie;Lee, Sangik;Kang, Il-Suk;Park, Bae Ho;Campbell, Eleanor E.B.;Lee, Sang Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.1-361.1
    • /
    • 2016
  • Due to their high sensitivity, fast response, small energy consumption and ease of integration, nanoelectromechanical systems (NEMS) have attracted much interest in various applications such as high speed memory devices, energy harvesting devices, frequency tunable RF receivers, and ultra sensitive mass sensors. Since the device performance of NEMS is closely related with the mechanical and flexural properties of the material in NEMS, analysis of the mechanical and flexural properties such as intrinsic tensile stress and Young's modulus is a crucial factor for designing the NEMS structures. In the present work, the intrinsic mechanical properties of highly stressed silicon nitride (SiN) beams are investigated as a function of the beam length using two different techniques: (i) dynamic flexural measurement using optical interferometry and (ii) quasi-static flexural measurement using atomic force microscopy. The reliability of the results is analysed by comparing the results from the two different measurement techniques. In addition, the mass density, Young's modulus and internal stress of the SiN beams are estimated by combining the techniques, and the prospect of SiN based NEMS for application in high sensitive mass sensors is discussed.

  • PDF

Analysis of calcium phosphate nanoclusters using the TOF-MEIS

  • Jung, Kang-Won;Park, Jimin;Yang, Ki Dong;Nam, Ki Tae;Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.228.2-228.2
    • /
    • 2015
  • We have developed a TOF-MEIS system using 70~100 keV He+. A TOF-MEIS system was designed and constructed to minimize the ion beam damage effect by utilizing a pulsed ion beam with a pulse width < 1 ns and a TOF delay-line-detector with an 120 mm diameter and a time resolution of 180 ps. The TOF-MEIS is an useful tool for interfacial analysis of the composition and structure of nano and bio systems. Our recent applications are reported. We investigated the effect with Polyaspartic Acid (pAsp) and Osteocalcin on the initial bone growth of calcium hydroxyl appatite on a carboxyl terminated surface. When pAsp is not added to the self-assembled monolayers of Ca 2mM with Phosphate 1.2 mM, the growth procedure of calcium hydroxyl appatite cannot be monitored due to its rapid growth. When pAsp is added to the SAMs, the initial grow stage of the Ca-P can be monitored so that the chemical composition and their nucleus size can be analyzed. Firstly discovered the existence of 1-nm-sized abnormal calcium-rich clusters (Ca/P ~ 3) comprised of three calcium ions and one phosphate ion. First-principles studies demonstrated that the clusters can be stabilized through the passivation of the non-collagenous-protein mimicking carboxyl-ligands, and it progressively changes their compositional ratio toward that of a bulk phase (Ca/P~1.67) with a concurrent increase in their size to ~2 nm. Moreover, we found that the stoichiometry of the clusters and their growth behavior can be directed by the surrounding proteins, such as osteocalcin.

  • PDF

Influence of Subsurface Layer on the Indentation Damage Behavior of YSZ Thermal Barrier Coating Layers Deposited by Electron Beam Physical Vapor Deposition (전자 빔 물리적 증착(EB-PVD)법으로 코팅된 YSZ 열차폐층의 압흔손상 거동에 대한 하부층의 영향)

  • Heo, Yong-Suk;Park, Sang-Hyun;Han, In-Sub;Woo, Sang-Kuk;Jung, Yeon-Gil;Paik, Un-Gyu;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.549-555
    • /
    • 2008
  • The thermal barrier coating must withstand erosion when subjected to flowing gas and should also maintain good stability and mechanical properties while it must also protect the turbine component from high temperature, hot corrosion, creep, and oxidation during operation. In this study we investigated the influence of subsurface layer, $Al_2O_3$ or NiCrCoAIY bond coat layer, on the indentation damage behavior of YSZ thermal barrier coating layers deposited by electron beam physical vapor deposition (EB-PVD). The bond coat is deposited using different process such as air plasma spray (APS) or spray of high velocity oxygen fuel (HVOF) and the thickness is varied. Hertzian indentation technique is used to induce micro damages on the coated layer. The stress-strain behaviors are characterized by results of the indentation tests.

Surface Characteristics and Micro-Scale Friction Property of Natural Surface (식물잎의 표면형상 및 마이크로-스케일에서의 마찰 특성)

  • Yoon, Eui-Sung;Kim, Hong-Joon;Singh R. Arvind;Kim, Jin-Seok
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.237-242
    • /
    • 2006
  • Surfaces found in nature, including biological surfaces have been providing inspiration to modify/fabricate artificial surfaces as solutions for tribological applications. As an example, the concept of 'lotus-effect' has motivated tribologists world wide to modify/fabricate surfaces for enhanced tribological performance. These was done by creating nano/micro-scale asperities on various surfaces using ion beam milling and ion-beam assisted roughening. In order to understand the attributes of natural surfaces, which are inspirational to tribologists, we characterized the surface of two natural surfaces-Nelumbo nucifera (lotus) and Colocasia esculenta leaves. Further, we evaluated their micro-scale friction property, both in their fresh and dried conditions. The characterization of surfaces was conducted using a confocal microscope and SEM, which involved the evaluation of size and distribution of protuberances. The micro-scale friction property was evaluated using a ball-on-flat type micro-tribo tester, under reciprocating motion. A soda lime glass ball (2 mm diameter) was used in these tests. Tests were conducted at the applied normal load of $3000{\mu}N$, at a sliding speed of 1 mm/sec for a scan length of 3 mm. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C}$) and relative humidity ($45{\pm}5%$). It was observed that the friction behaviour of the natural surfaces was influenced by their surface characteristics (morphology and distribution of protuberances) and also by the condition (fresh or dried) in which they were tested.