References
- Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996;17:137-46. https://doi.org/10.1016/0142-9612(96)85758-9
- Cukierman E, Pankov R, Stevens DR, and Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294:1708-12. https://doi.org/10.1126/science.1064829
- Grayson WL, Ma T, Bunnell B. Human mesenchymal stem cells tissue development in 3D PET matrices. Biotechnol Prog. 2004;20:905-12. https://doi.org/10.1021/bp034296z
- Lim JY, Donahue HJ. Biomaterial characteristics important to skeletal tissue engineering. J Musculoskelet Neuronal Interact. 2004;4:396-8.
- Kostic A, Lynch, CD, Sheetz MP. Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS One. 2009;4:e6361. https://doi.org/10.1371/journal.pone.0006361
- Tilghman RW, Cowan CR, Mih JD, Koryakina Y, Gioeli D, Slack-Davis JK, et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One. 2010;5:e12905. https://doi.org/10.1371/journal.pone.0012905
- Tzvetkova-Chevolleau T, Stephanou A, Fuard D, Ohayon J, Schiavone P, Tracqui P. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials. 2008;29:1541-51. https://doi.org/10.1016/j.biomaterials.2007.12.016
- De Silva MN, Desai R, Odde DJ. Micro-patterning of animal cells on PDMS substrates in the presence of serum without use of adhesion inhibitors. Biomedical microdevices. 2004;6:219-22. https://doi.org/10.1023/B:BMMD.0000042051.09807.8c
- Lim JY, Donahue HJ. Cell sensing and response to microand nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 2007;13:1879-91. https://doi.org/10.1089/ten.2006.0154
- Bae J, Oh E, Lee H, Key J. Improved Manufacturing Method of Discoidal Nanoparticles for Cancer Theranostics. Journal of Biomedical Engineering Research. 2016;37:46-52. https://doi.org/10.9718/JBER.2016.37.1.46
- Fuard D, Tzvetkova-Chevolleau T, Decossas S, Tracqui P, Schiavone P. Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectronic Engineering. 2008;85:1289-93. https://doi.org/10.1016/j.mee.2008.02.004
- Palchesko RN, Zhang L, Sun Y, Feinberg AW. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One. 2012;7:e51499. https://doi.org/10.1371/journal.pone.0051499
- Mata A, Boehm C, Fleischman AJ, Muschler G, Roy S. Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces. J Biomed Mater Res. 2002;62:499-506. https://doi.org/10.1002/jbm.10353
- Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485-92. https://doi.org/10.1038/nature08908
- Geli MI, Riezman H. Endocytic internalization in yeast and animal cells: similar and different. J Cell Sci. 1998;111:1031-7. https://doi.org/10.1242/jcs.111.8.1031
- Harries PA, Schoelz JE, Nelson RS. Intracellular transport of viruses and their components: utilizing the cytoskeleton and membrane highways. Mol Plant Microbe Interact. 2010;23:1381-93. https://doi.org/10.1094/MPMI-05-10-0121
- Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310:1139-43. https://doi.org/10.1126/science.1116995
- Curtis A, Riehle, M. Tissue engineering: the biophysical background. Phys Med Biol. 2001;46:R47-65. https://doi.org/10.1088/0031-9155/46/4/201