• Title/Summary/Keyword: nano beam

Search Result 691, Processing Time 0.033 seconds

Continuum Model considering Surface Effect for Thin film (박막구조해석을 위한 표면효과를 고려하는 연속체 모델)

  • Choi, Jin-Bok;Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.527-531
    • /
    • 2007
  • The classical continuum theory-based thin film model is independent of their size and the surface effect can be ignored. But the surface to bulk ratio becomes very large in nano-size structures such as nano film, nano wire and nano beam. In this case, surface effect plays an important role and its contribution of the surface effect must be considered. Molecular dynamics simulation has been a conventional way to analyze these ultra-thin structures but structures in the range between submicro and micro are difficult to analyze by classical molecular dynamics due to the restriction of computing resources and time. Therefore, in present study, the continuum-based method is considered to predict the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film. The proposed continuum based-thin plate finite element is efficient and reliable for the prediction of nano-scale film behavior.

  • PDF

Bending Properties of ZnO Nanorod using Nano-Manipulator (나노조작기를 이용한 ZnO 나노막대 굽힘 물성 평가)

  • Jeon, Sang-Gu;Jang, Hoon-Sik;Kwon, Oh-Heon;Nahm, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.260-263
    • /
    • 2008
  • The bending test of an individual ZnO nanorod was performed with a nano-manipulator and a force sensor inside the scanning electron microscope (SEM), and the bending properties of ZnO nanorod were also discussed. The ZnO nanorod used in this experiment was fabricated by means of solution base process. The force sensor used for bending test of ZnO nanorod was typed with cantilever. The force sensor was mounted on the nano-manipulator. The nano-manipulator was controlled and manipulated by a personal computer. The each end of an individual ZnO nanorod was attached on the rigid support and the tip of the force sensor with an electron beam exposure, and then the bending test was carried out by controlling of the nano-manipulator. The bending modulus of a ZnO nanorod was calculated at 69.35GPa after the bending test.

  • PDF

As BEP Effects on the Properties of InAs Thin Films Grown on Tilted GaAs(100) Substrate (기울어진 GaAs(100) 기판 위에 성장된 InAs 박막 특성에 대한 As BEP 효과)

  • Kim, Min-Su;Leem, Jae-Young
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.4
    • /
    • pp.176-179
    • /
    • 2010
  • The InAs thin films were grown on GaAs(100) substrate with $2^{\circ}C$ tilted toward [$0\bar{1}\bar{1}$] with different As beam equivalent pressure (BEP) by using molecular beam epitaxy. Growth temperature and thickness of the InAs thin films were $480^{\circ}C$ and 0.5 ${\mu}m$, respectively. We studied the relation between the As BEP and the properties of InAs thin films. The properties of InAs thin films were observed by reflection high-energy electron diffraction (RHEED), optical microscope, and Hall effect. The growth, monitored by RHEED, was produced through an initial 2D (2-dimensional) nucleation mode which was followed by a period of 3D (3-dimensional) island growth mode. Then, the 2D growth recovered after a few minutes and the streak RHEED pattern remained clear till the end of growth. The crystal quality of InAs thin films is dependent strongly on the As BEP. When the As BEP is $3.6{\times}10^{-6}$ Torr, the InAs thin film has a high electron mobility of 10,952 $cm^2/Vs$ at room temperature.

Chemical Imaging Analysis of the Micropatterns of Proteins and Cells Using Cluster Ion Beam-based Time-of-Flight Secondary Ion Mass Spectrometry and Principal Component Analysis

  • Shon, Hyun Kyong;Son, Jin Gyeong;Lee, Kyung-Bok;Kim, Jinmo;Kim, Myung Soo;Choi, Insung S.;Lee, Tae Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.815-819
    • /
    • 2013
  • Micropatterns of streptavidin and human epidermal carcinoma A431 cells were successfully imaged, as received and without any labeling, using cluster $Au_3{^+}$ ion beam-based time-of-flight secondary ion mass spectrometry (TOF-SIMS) together with a principal component analysis (PCA). Three different analysis ion beams ($Ga^+$, $Au^+$ and $Au_3{^+}$) were compared to obtain label-free TOF-SIMS chemical images of micropatterns of streptavidin, which were subsequently used for generating cell patterns. The image of the total positive ions obtained by the $Au_3{^+}$ primary ion beam corresponded to the actual image of micropatterns of streptavidin, whereas the total positive-ion images by $Ga^+$ or $Au^+$ primary ion beams did not. A PCA of the TOF-SIMS spectra was initially performed to identify characteristic secondary ions of streptavidin. Chemical images of each characteristic ion were reconstructed from the raw data and used in the second PCA run, which resulted in a contrasted - and corrected - image of the micropatterns of streptavidin by the $Ga^+$ and $Au^+$ ion beams. The findings herein suggest that using cluster-ion analysis beams and multivariate data analysis for TOF-SIMS chemical imaging would be an effectual method for producing label-free chemical images of micropatterns of biomolecules, including proteins and cells.

Soft X-ray Nano-spectroscopy for Electronic Structures of Transition Metal Oxide Nano-structures

  • Oshima, Masaharu
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.317-327
    • /
    • 2014
  • In order to develop nano-devices with much lower power consumption for beyond-CMOS applications, the fundamental understanding and precise control of the electronic properties of ultrathin transition metal oxide (TMO) films are strongly required. The metal-insulator transition (MIT) is not only an important issue in solid state physics, but also a useful phenomenon for device applications like switching or memory devices. For potential use in such application, the electronic structures of MIT, observed for TMO nano-structures, have been investigated using a synchrotron radiation angle-resolved photoelectron spectroscopy system combined with a laser molecular beam epitaxy chamber and a scanning photoelectron microscopy system with 70 nm spatial resolution. In this review article, electronic structures revealed by soft X-ray nano-spectroscopy are presented for i) polarity-dependent MIT and thickness-dependent MIT of TMO ultrathin films of $LaAlO_3/SrTiO_3$ and $SrVO_3/SrTiO_3$, respectively, and ii) electric field-induced MIT of TMO nano-structures showing resistance switching behaviors due to interfacial redox reactions and/or filamentary path formation. These electronic structures have been successfully correlated with the electrical properties of nano-structured films and nano-devices.

Study on Fabrication of Highly Ordered Nano Master by Using Anodic Aluminum Oxidation (AAO를 이용한 나노 마스터 제작에 관한 연구)

  • Kwon, J.T.;Shin, H.G.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.162-165
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. In order to replicate nano patterned master, the resulting good filled uniform nano molded structure through electro-forming process shows the validity of the fabricated nano pattern masters.

  • PDF

Study on Real-Time Digital Filter Design as Function of Scanning Frequency of Focused Electron Beam (집속 전자 빔 장치에서 스캔 주파수에 따른 실시간 디지털 필터 설계에 관한 연구)

  • Kim, Seung-Jae;Oh, Se-Kyu;Yang, Kyung-Sun;Jung, Kwang-Oh;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.479-485
    • /
    • 2011
  • To acquire images in a thermionic-scanning electron-beam system, a scanning unit is needed to control the electron beam emitted from the tungsten filament source. In scanning the electron beam on the solid surface, the signalto-noise ratio depends on the scanning frequency. We used a digital filter to reduce noise by analyzing the real-time frequency of a secondary electron signal. The noise and the true image signal were well separated. We designed the digital filter via a DSP floating-point operation, and the noise elimination resulted in enhanced image quality in a highresolution mode.