• Title/Summary/Keyword: nahA

Search Result 863, Processing Time 0.026 seconds

A Study on the Interoperability between the HL7 and the IEEE 1451 based Sensor Network (HL7과 IEEE 1451 기반 센서 네트워크와의 연동에 관한 연구)

  • Kim, Woo-Shik;Lim, Su-Young;Ahn, Jin-Soo;Nah, Ji-Young;Kim, Nam-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.457-465
    • /
    • 2008
  • HL7(Health Level 7) is a standard for exchanging medical and healthcare data among different medical information systems. As the ubiquitous era is coming, in addition to text and imaging information, a new type of data, i.e., streaming sensor data appear. Since the HL7 is not covering the interfaces among the devices that produces sensor data, it is expected that sooner or later the HL7 needs to include the biomedical sensors and sensor networks. The IEEE 1451 is a family of standards that deals with the sensors, transducers including sensors and actuators, and various wired or wireless sensor networks. In this paper, we consider the possibility of interoperability between the IEEE 1451 and HL7. After we propose a format of messages in HL7 to include the IEEE 1451 TEDS, we present some preliminary results that show the possibility of integrating the two standards.

A Study on the Improvement of Mechanical and Chemical Properties in Nano Semiconducting Materials (나도 반도전층 재료의 기계적/화학적 특성 향상에 관한 연구)

  • Shin, Dong-Hoon;Kook, Jeong-Ho;Nah, Chang-Woon;Park, Dae-Hee;Yang, Jong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.739-744
    • /
    • 2007
  • In this paper, we have investigated mechanical and chemical properties by changing the content of carbon nanotube, which is component part of semiconductive shield in underground power transmission cable. Specimens were made of sheet with the eight of those for measurement. The condition of specimens was a solid sheet. Chemical properties of specimens was measured by FT-ATR (Fourier Transform Attenuated Total Reflectance). Stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were 400[Kgf/Cm] and 600[%]. We could observe (unctional group (C=O, carbonyl group) of specimens through FT-ATR. From these experimental result, the concentration of functional group [C=O] was high accor야ng to increasing the content of carbon nanotube. We could know CNT/EEA was excellent more than other specimens from above experimental results. In Addition, the elongation ratio was decreased, and yield strength was increased according to increasing the content of carbon nanotube. Also, from these experimental result, we could know that a small amount of CNT/EEA has a excellent mechanical and chemical properties.

Development of Anti-fluttering Tilting Pad Journal Bearing with the Shape Modification of Upper Pad (상부패드의 형상 변경을 통한 'Anti-fluttering 틸팅패드 저널베어링' 개발)

  • Yang, Seong Heon;Nah, Un Hak;Park, Heui Joo;Kim, Chaesil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.5 s.32
    • /
    • pp.35-45
    • /
    • 2005
  • The tilting pad journal bearings have been widely used to support high pressure/high rotating turbine rotors owing to their inherent dynamic stability characteristics. However, fatigue damages in the upper unloaded pads and the break of locking pins etc. by pad fluttering are continuously taken place in the actual steam turbines. The purpose of this paper is to develop a new bearing model that can prevent bearing problems effectively by pad fluttering in a tilting pad journal bearing. A new bearing model which has a wedged groove is suggested from the studies of fluttering mechanism performed by previously research works. The fluttering characteristics of the upper unloaded pad are studied experimentally in order to verify the reliability of a new bearing model. It can be known that the phenomenon of pad fluttering nearly does not occurred in the new bearing model under the various experimental conditions. And it is observed that any kinds of bearing failures by pad fluttering does not detect in the application of acture steam turbines.

Compressive and Bending Behavior of Sandwich Panels with Octet Truss Core Fabricated from Wires (와이어를 이용하여 제작된 옥데트 트러스 샌드위치 판재의 압축 및 굽힘 거동)

  • Lim Ji-Hyun;Nah Seong-Jun;Koo Man-Hoe;Kang Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.470-476
    • /
    • 2005
  • Ultra light metal structures have been studied for several years because of their superior specific stiffness, strength and potential of multi functions. Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels having octet truss cores. Wires bent in a shape of triangular wave were assembled to construct an Octet truss core and it was bonded with two face sheets to be a sandwich panel. The bending & compressive strength and stiffness were estimated through elementary mechanics for the sandwich specimens with two kinds of face sheets and the results were compared with the ones measured by experiments. Some aspects of assembling and mechanical behavior were discussed compared with Kagome core fabricated from wire, which had been introduced in the authors' previous work.

The effect of non-uniform current distribution on transport current loss in stacked high-Tc superconductor tapes

  • Choi, Se-Yong;Nah, Wan-Soo;Joo, Jin-Ho;Ryu, Kyung-Woo;Lee, Byoung-Seob;Yoon, Jang-Hee;Ok, Jung-Woo;Park, Jin-Yong;Won, Mi-Sook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.16-19
    • /
    • 2012
  • The influence of current distribution on the transport current loss in vertically stacked high-$T_c$ superconductor (HTS) tapes was evaluated. AC loss was analyzed as a function of current distribution by introducing a current distribution parameter through a numerical method (finite element analysis). AC loss under non-uniform current distribution is always higher than that for a uniformly distributed transport current in a conductor. Although the effect of non-uniformity is relatively insignificant in low transport current, AC loss increases substantially in high transport current regions as non-uniformity is enlarged. The results verify that non-uniform current distribution causes extra loss by examining the cross-sectional view of current densities in stacked conductor.

Measurement of Turbulent Wake behind a SUBOFF Model and Derivation of Experimental Equations (SUBOFF 모형 후방 난류항적 계측 및 실험식 유도)

  • Shin, Myung-Soo;Moon, Il-Sung;Nah, Young-In;Park, Jong-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.198-204
    • /
    • 2011
  • This paper presents the experimental result to investigate the characteristics of turbulent wake generated by submarine. A SUBOFF nude model which was assumed as an axial -symmetric body was used to create wake, and a thin strut was mounted on the top of the model. The experiments were conducted in a circulating water channel(CWC), and a hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the timeaveraged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, experimental equations are derived. These experimental equations show well the general characteristics of the turbulent wake behind the submerged body with simple configuration.

High Resolution Patternning for Graphene Nanoribbons (GNRs) Using Electro-hydrodynamic Lithography

  • Lee, Su-Ok;Kim, Ha-Nah;Lee, Jae-Jong;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.198-198
    • /
    • 2012
  • Graphene has been the subject of intense study in recent years owing to its good optoelectronic properties, possibility for stretchable electronics, and so on. Especially, many research groups have studied about graphene nanostructures with various sizes and shapes. Graphene needs to be fabricated into useful devices with controllable electrical properties for its successful device applications. However, this been far from satisfaction owing to a lack of reliable pattern transfer techniques. Photolithography, nanowire etching, and electron beam lithography methods are commonly used for construction of graphene patterns, but those techniques have limitations for getting controllable GNRs. We have developed a novel nanoscale pattern transfer technique based on an electro-hydrodynamic lithography providing highly scalable versatile pattern transfer technique viable for industrial applications. This technique was exploited to fabricate nanoscale patterned graphene structures in a predetermined shape on a substrate. FE-SEM, AFM, and Raman microscopy were used to characterize the patterned graphene structures. This technique may present a very reliable high resolution pattern transfer technique suitable for graphene device applications and can be extended to other inorganic materials.

  • PDF

Investigation of Bottom Cracks in the Carbonated Poly(ethylene terephthalate) Bottle

  • Pae, You-Lee;Nah, Chang-Woon;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.354-362
    • /
    • 2003
  • The use of a petaloid design for the bottom of carbonated poly(ethylene terephthalate)(PET) bottles is widely spread. This study investigated the causes of bottom cracks. The tensile yield stress variations of PET according to the crystallinity and stretch ratio were examined, then the stretch ratio and strength in the bottom area of a blown bottle were analyzed. A crack test was also performed to observe the cracking phenomena. The distribution of the effective stress and maximum principal stress were both examined using computer simulation to seek the influence of the bottom design on crack. It was concluded that the bottom cracks occurred because of inadequate material strength due to the insufficient stretching of PET, plus the coarse design of a petaloid bottom. The stretch ratio at the bottom during bottle blowing should be higher than the strain hardening point of PET to produce enhanced mechanical strength. The cracks in the bottom of the PET bottles occurred through crazing below the yield stress. The maximum principal stress was higher in the valleys of the petaloid bottom than in the rest bottom area, and the maximum principal stress had a strong effect on the cracks.

A Study on the Meaning of Sensibility and Vocabulary System for Sensibility Evaluation (감성 평가를 위한 감성의 의미 재정립과 어휘 체계에 관한 연구)

  • Jung, Hyun-Won;Nah, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.17-25
    • /
    • 2007
  • 'Emotional value' has been a buzz word for design and ergonomics in the era of business innovation. However, the complication of 'emotion' in terms of literal and practical meaning has made it a challenging but confusing task for designers to develop a new product with emotional value. 'Sensibility' and 'emotion' are interchangeable terms to describe human feeling ('gamsung' in Korean). The confusion reached at its peak with Korean terms. Even scholars in Korean language, psychologists, ergonomists, and designers are bewildered at the choice of proper expression for human feeling in both Korean and English. The difficulty could explain the problems in 'sensibility ergonomics' in Korea. The purpose of this paper is to provide both fundamental and satisfying information with people in the area of 'sensibility ergonomics'. Therefore, in this paper, a number of articles and books on sensibility, psychology, sensibility ergonomics, and design were reviewed to clarify the meaning of sensibility and relationship among similar words that have been used with unintentional misunderstanding. Also many adjectives on human sensibility were collected and complied for the use of sensibility evaluation.

Effect of Degree of Interfacial Interlinking on Adhesive Strength and Fracture Morphology of Rubber Layers (고무층간 가교정도가 접착강도 및 파괴형태에 미치는 영향)

  • Kim, Hyeon-Jae;Kaang, Shin-Young;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.31-44
    • /
    • 1999
  • Interfacial adhesive strength between the fully-crosslinked and partially-crosslinked rubber layers were Investigated at the temperature range of $30{\sim}120^{\circ}C$ for four different rubbers(NR, SBR, EPDM, BIMS). The surfaces of interfacial failure were also investigated using a scanning electron microscopy(SEM). The physical interlinking played a major role in the adhesive strength between the fully-crosslinked rubber layers. When a partially-crosslinked rubber layer was bonded to the fully-crosslinked one, the chemical as well as the physical interlinking affected the adhesive strength. NR showed a "interfacial knotty tearing" pattern, while EPDM showed a typical "cross-hatched" one when the adhesive strength approached to the cohesive tear strength of each material.

  • PDF