• Title/Summary/Keyword: nad5 gene

Search Result 34, Processing Time 0.021 seconds

Effects of Deamido-$\textrm{NAD}^{+}$ on Self-splicing of Primary Transcripts of Phage T4 Thymidylate Synthase Gene

  • Park, In Kook
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.141-144
    • /
    • 2000
  • Effects of deamido-$\textrm{NAD}^{+}$on self-splicing of primary transcripts of the phage T4 thymidylate synthase gene (td) was investigated. The self-splicing was not affected by deamido-$\textrm{NAD}^{+}$- at concentrations up to 2 mM. However, it began to decrease at 5 mM and the formation of splicing products such as the linear intron, intron-exon 2 and exon 1-exon 2, was slightly reduced. At 20 mM the self-splicing activity was almost completely abolished. This analog of the coenzyme $\textrm{NAD}^{+}$- inhibits the self-splicing of td intron RNA although it does not possess a guanidine group in its structure. The analysis of inhibitory concentrations and structural examination suggests that the key structural features of deamido-$\textrm{NAD}^{+}$ responsible for the inhibition of splicing may be the ADP-ribose moiety.

  • PDF

Partial Mitochondrial Gene Arrangements Support a Close Relationship between Tardigrada and Arthropoda

  • Ryu, Shi Hyun;Lee, Ji Min;Jang, Kuem-Hee;Choi, Eun Hwa;Park, Shin Ju;Chang, Cheon Young;Kim, Won;Hwang, Ui Wook
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.351-357
    • /
    • 2007
  • Regions (about 3.7-3.8 kb) of the mitochondrial genomes (rrnL-cox1) of two tardigrades, a heterotardigrade, Batillipes pennaki, and a eutardigrade, Pseudobiotus spinifer, were sequenced and characterized. The gene order in Batillipes was $\underline{rrnL}-\underline{V}-\underline{rrnS}-\underline{Q}-\underline{I}$-M-nad2-W-$\underline{C}-\underline{Y}$-cox1, and in Pseudobiotus it was $\underline{rrnL}-\underline{V}-\underline{rrnS}-\underline{Q}$-M-nad2-W-$\underline{C}-\underline{Y}$-cox1. With the exception of the trnI gene, the two tardigrade regions have the same gene content and order. Their gene orders are strikingly similar to that of the chelicerate Limulus polyphemus (rrnL-V-rrnS-CR-I-Q-M-nad2-W-C-Y-cox1), which is considered to be ancestral for arthropods. Although the tardigrades do not have a distinct control region (CR) within this segment, the trnI gene in Pseudobiotus is located between rrnL-trnL1 and trnL2-nad1, and the trnI gene in Batillipes is located between trnQ and trnM. In addition, the 106-bp region between trnQ and trnM in Batillipes not only contains two plausible trnI genes with opposite orientations, but also exhibits some CR-like characteristics. The mitochondrial gene arrangements of 183 other protostomes were compared. 60 (52.2%) of the 115 arthropods examined have the M-nad2-W-C-Y-cox1 arrangement, and 88 (76.5%) the M-nad2-W arrangement, as found in the tardigrades. In contrast, no such arrangement was seen in the 70 non-arthropod protostomes studied. These are the first non-sequence molecular data that support the close relationship of tardigrades and arthropods.

Molecular Identification of Diphyllobothrium nihonkaiense from 3 Human Cases in Heilongjiang Province with a Brief Literature Review in China

  • Zhang, Weizhe;Che, Fei;Tian, Song;Shu, Jing;Zhang, Xiaoli
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.6
    • /
    • pp.683-688
    • /
    • 2015
  • Human diphyllobothriasis is a widespread fish-borne zoonosis caused by the infection with broad tapeworms belonging to the genus Diphyllobothrium. In mainland China, so far 20 human cases of Diphyllobothrium infections have been reported, and the etiologic species were identified as D. latum and D. nihonkaiense based on morphological characteristics or molecular analysis. In the present study, proglottids of diphyllobothriid tapeworms from 3 human cases that occurred in Heilongjiang Province, China were identified as D. nihonkaiense by sequencing mitochondrial cytochrome c oxidase subunit I (cox1) and NADH dehydrogenase subunit 5 (nad5) genes. Two different cox1 gene sequences were obtained. One sequence showed 100% homology with those from humans in Japan. The remaining cox1 gene sequence and 2 different nad5 gene sequences obtained were not described previously, and might reflect endemic genetic characterizations. D. nihonkaiense might also be a major causative species of human diphyllobothriasis in China. Meanwhile, the finding of the first pediatric case of D. nihonkaiense infection in China suggests that infants infected with D. nihonkaiense should not be ignored.

Sirtuin/Sir2 Phylogeny, Evolutionary Considerations and Structural Conservation

  • Greiss, Sebastian;Gartner, Anton
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.407-415
    • /
    • 2009
  • The sirtuins are a protein family named after the first identified member, S. cerevisiae Sir2p. Sirtuins are protein deacetylases whose activity is dependent on $NAD^+$ as a cosubstrate. They are structurally defined by two central domains that together form a highly conserved catalytic center, which catalyzes the transfer of an acetyl moiety from acetyllysine to $NAD^+$, yielding nicotinamide, the unique metabolite O-acetyl-ADP-ribose and deacetylated lysine. One or more sirtuins are present in virtually all species from bacteria to mammals. Here we describe a phylogenetic analysis of sirtuins. Based on their phylogenetic relationship, sirtuins can be grouped into over a dozen classes and subclasses. Humans, like most vertebrates, have seven sirtuins: SIRT1-SIRT7. These function in diverse cellular pathways, regulating transcriptional repression, aging, metabolism, DNA damage responses and apoptosis. We show that these seven sirtuins arose early during animal evolution. Conserved residues cluster around the catalytic center of known sirtuin family members.

Purification, crystallization and X-ray crystallographic analysis of nicotinamidase Pnc1 from Kluyveromyces lactis

  • Kim, Shinae;Chang, Jeong Ho
    • Biodesign
    • /
    • v.7 no.1
    • /
    • pp.24-27
    • /
    • 2019
  • Pnc1 converts nicotinamide to nicotinic acid to generate NAD+ through the Preiss-Handler pathway that is one of the NAD+-salvage pathway. By reducing levels of nicotinamide, an inhibitor of the NAD+-dependent histone deacetylase Sir2, yeast Pnc1 contributes gene silencing. In this study, to understand the structural features and molecular mechanism of nicotinamidase Pnc1, we overexpressed, purified, and crystallized the N-terminally His6-tagged Pnc1 protein from Kluyveromyces lactis and obtained X-ray diffraction data at a resolution of 2.2 Å. The crystals of the K. lactis Pnc1 (KlPnc1) belonged to space group P212121 with unit cell parameters a=38.5, b=77.3, c=83.3, and α=β=γ= 90°. There is one molecule in the asymmetric unit.

Phylogeographic study of Abies koreana and Abies nephrolepis in Korea based on mitochondrial DNA (미토콘드리아 DNA 분석을 통한 구상나무와 분비나무의 계통지리학적 연구)

  • Yang, Jong-Cheol;Yi, Dong-Keun;Joo, Min-Jeong;Choi, Kyung
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.3
    • /
    • pp.254-261
    • /
    • 2015
  • Genetic variations of Abies koreana and Abies nephrolepis were assessed using two mitochondrial DNA regions (nad5 intron 4 and nad5 intron 1) for 16 natural populations to understand their phylogeographical history. Seven polymorphic sites of the two combined regions resulted in the resolution of four haplotypes (M1-M4). The average gene diversity within the population ($H_S$) was 0.098, the total gene diversity ($H_T$) was 0.620, and the interpopulation differentiation was $G_{ST}=0.841$, $N_{ST}=0.849$. The populations were divided into three groups (northern area, central area, southern area) according to their geographic locations. The populations of the northern and southern areas were mostly fixed for M1 and M2, respectively. The populations of the central area showed the highest levels of gene diversity ($H_T=0.654$) due to introgression from the northern area and southern area. The presence of a single mtDNA haplotype in the southern area suggests that current widespread populations have expanded to the central area from a specific refugium population after the last glacial period.

The NAD(P)H: Quinine Oxidoreductase 1 (NQO1) Gene 609 C>T Polymorphism is Associated with Gastric Cancer Risk: Evidence from a Case-control Study and a Meta-analysis

  • Hu, Wei-Guo;Hu, Jia-Jia;Cai, Wei;Zheng, Min-Hua;Zang, Lu;Wang, Zheng-Ting;Zhu, Zheng-Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2363-2367
    • /
    • 2014
  • The association between the NAD(P)H:quinone oxidoreductase 1 (NQO1) gene C609T polymorphism (rs1800566) and gastric cancer has been widely evaluated, but a definitive answer is so far lacking. We first conducted a case-control study to assess this association in a large Han Chinese population, and then performed a meta-analysis to further address this issue. Although our case-control association study indicated no significant difference in the genotype and allele distributions of C609T polymorphism between gastric cancer patients and controls, in the meta analysis involving 4,000 subjects, comparison of alleles 609T and 609C indicated a significantly increased risk (46%) for gastric cancer (95% confidence interval (95%CI) for odds ratio (OR)=1.20-1.79) in individuals with the T allele. The tendency was similar to the homozygote (OR=1.81, 95%CI: 1.16-2.84), dominant models (OR=1.41, 95%CI: 1.12-1.79), as well as recessive model (OR=1.58, 95%CI: 1.06-2.35). Stratified analysis by study design demonstrated stronger associations in population-based than in hospital-based studies. And ethnicity-based analysis demonstrated a significant association in Asians. We conclude that the NQO1 gene C609T polymorphism increases the risk for gastric cancer, especially in Asian populations.

Molecular characterization of lysine 6-dehydrogenase from Achromobacter denitrificans

  • Ruldeekulthamrong, Prakarn;Maeda, Sayaka;Kato, Shin-ichiro;Shinji, Nagata;Sittipraneed, Siriporn;Packdibamrung, Kanoktip;Misono, Haruo
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.790-795
    • /
    • 2008
  • An inducible lysine 6-dehydrogenase (Lys 6-DH), which catalyzes the oxidative deamination of the 6-amino group of L-lysine in the presence of $NAD^+$, was purified to homogeneity from Achromobacter denitrificans, yielding a homodimeric protein of 80 kDa. The enzyme was specific for the substrate L-lysine and $NAD^+$ served as a cofactor. The dimeric enzyme associated into a hexamer in the presence of 10 mM L-lysine. The $K_m$ values for L-lysine and $NAD^+$ were 5.0 and 0.09 mM, respectively. The lys 6-dh gene was cloned and overexpressed in E. coli. The open reading frame was 1,107 nucleotides long and encoded a peptide containing 368 amino acids with 39,355 Da. The recombinant enzyme was purified to homogeneity and characterized. Enzyme activities and kinetic properties of the recombinant enzyme were almost the same as those of the endogenous enzyme obtained from A. denitrificans. Crystals of the enzyme were obtained using the hanging drop method.

Complete Sequence of the Mitochondrial Genome of Spirometra ranarum: Comparison with S. erinaceieuropaei and S. decipiens

  • Jeon, Hyeong-Kyu;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Kang, Yeseul;Bia, Mohammed Mebarek;Lee, Sang-Hwa;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • This study was undertaken to determine the complete mitochondrial DNA sequence and structure of the mitochondrial genome of Spirometra ranarum, and to compare it with those of S. erinaceieuropaei and S. decipiens. The aim of this study was to provide information of the species level taxonomy of Spirometra spp. using the mitochondrial genomes of 3 Spirometra tapeworms. The S. ranarum isolate originated from Myanmar. The mitochondrial genome sequence of S. ranarum was compared with that of S. erinaceieuropaei (GenBank no. KJ599680) and S. decipiens (GenBank no. KJ599679). The complete mtDNA sequence of S. ranarum comprised 13,644 bp. The S. ranarum mt genome contained 36 genes comprising 12 protein-coding genes, 22 tRNAs and 2 rRNAs. The mt genome lacked the atp8 gene, as found for other cestodes. All genes in the S. ranarum mitochondrial genome are transcribed in the same direction and arranged in the same relative position with respect to gene loci as found for S. erinaceieuropaei and S. decipiens mt genomes. The overall nucleotide sequence divergence of 12 protein-coding genes between S. ranarum and S. decipiens differed by 1.5%, and 100% sequence similarity was found in the cox2 and nad6 genes, while the DNA sequence divergence of the cox1, nad1, and nad4 genes of S. ranarum and S. decipiens was 2.2%, 2.1%, and 2.6%, respectively.

Overexpression, Purification, and Biochemical Characterization of the Thermostable NAD-dependent Alcohol Dehydrogenase from Bacillus stearothermophilus

  • Shim, Eun-Jung;Jeon, Sang-Hoon;Kong, Kwang-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.738-744
    • /
    • 2003
  • The gene ADH encoding NAD-dependent alcohol dehydrogenase from Bacillus stearothennophilus was cloned and overexpressed as a GST fusion protein at a high level in Escherichia coli. The expressed fusion protein was purified simply by glutathione affinity chromatography. GST fusion protein was then cleaved by thrombin, while soluble enzyme was further purified by glutathione affinity chromatography. The recombinant enzyme had the same elctrophoretic mobility as the native enzyme from Bacillus stearothennophilus. The recombinant enzyme catalyzed the oxidation of a number of alcohols and exhibited high activities towards secondary alcohols. The $K_m\;and\;V_{max}$ values of the recombinant enzyme for ethanol were 5.11 mM and 61.35 U/mg, respectively. Pyridine and imidazole notably inhibited the enzymatic activity. The activity of the recombinant enzyme optimally proceeded at pH 9.0 and $70^{\circ}C$. The midpoint of the temperature-stability curve for the recombinant enzyme was approximately $68^{\circ}C$, and the enzyme was not completely inactivated even at $85^{\circ}C$. The recombinant enzyme showed a high resistance towards denaturing agents (0.05% SDS, 0.1 M urea). Therefore, due to its stability and relatively broad substrate specificity, the recombinant enzyme could be utilized in bio-industrial processes and biosensors.