DOI QR코드

DOI QR Code

Phylogeographic study of Abies koreana and Abies nephrolepis in Korea based on mitochondrial DNA

미토콘드리아 DNA 분석을 통한 구상나무와 분비나무의 계통지리학적 연구

  • Yang, Jong-Cheol (Division of forest biodiversity, Korea National Arboretum) ;
  • Yi, Dong-Keun (Division of forest biodiversity, Korea National Arboretum) ;
  • Joo, Min-Jeong (Division of forest biodiversity, Korea National Arboretum) ;
  • Choi, Kyung (Division of forest biodiversity, Korea National Arboretum)
  • 양종철 (국립수목원 산림생물조사과) ;
  • 이동근 (국립수목원 산림생물조사과) ;
  • 주민정 (국립수목원 산림생물조사과) ;
  • 최경 (국립수목원 산림생물조사과)
  • Received : 2015.08.20
  • Accepted : 2015.09.07
  • Published : 2015.09.30

Abstract

Genetic variations of Abies koreana and Abies nephrolepis were assessed using two mitochondrial DNA regions (nad5 intron 4 and nad5 intron 1) for 16 natural populations to understand their phylogeographical history. Seven polymorphic sites of the two combined regions resulted in the resolution of four haplotypes (M1-M4). The average gene diversity within the population ($H_S$) was 0.098, the total gene diversity ($H_T$) was 0.620, and the interpopulation differentiation was $G_{ST}=0.841$, $N_{ST}=0.849$. The populations were divided into three groups (northern area, central area, southern area) according to their geographic locations. The populations of the northern and southern areas were mostly fixed for M1 and M2, respectively. The populations of the central area showed the highest levels of gene diversity ($H_T=0.654$) due to introgression from the northern area and southern area. The presence of a single mtDNA haplotype in the southern area suggests that current widespread populations have expanded to the central area from a specific refugium population after the last glacial period.

분비나무와 구상나무의 계통지리적 유연관계 파악을 위하여 16개 지역의 구상나무와 분비나무 집단에 대하여 미토콘드리아 DNA(nad5 intron 4, nad5 intron 1 지역)를 이용한 유전적 분석을 수행하였다. 그 결과 총 7 지역의 유전자 변이가 확인되었으며, 4개의 반수체형이 확인되었다. 개체군 내 평균 유전다양성($H_S$)은 0.098, 전체 유전다양성($H_T$)은 0.620으로 관찰되었으며, 개체군 간 분화값은 $G_{ST}=0.841$, $N_{ST}=0.849$로 확인되었다. 조사 개체의 지리적 위치에 따라 일본지역을 제외하고 3개의 그룹(북부지역, 중부지역, 남부지역)으로 나누었다. 북부지역과 남부지역은 대부분 각각 M1, M2 단일의 반수체형을 가지며, 중부지역은 북부지역과 남부지역의 분포경계에 위치하면서 유전자 유입으로 인해 유전 다양성 ($H_T=0.654$) 이 가장 높게 나타난 것으로 판단된다. 현재 남부지역의 단일의 반수체형(M2) 분포는 빙하기 때 북부지역에서 남하한 개체군들이 지리적 격리를 통해 분화하게 되고 빙하기 이후 다시 중부지역까지 분포 확장된 결과로 추측된다.

Keywords

References

  1. Aizawa, M., Z.S. Kim, H. Yoshimaru. 2012. Phylogeography of the Korean pine (Pinus koraiensis) in northeast Asia: inferences from organelle gene sequences. Journal of Plant Research 125(6): 713-723. https://doi.org/10.1007/s10265-012-0488-4
  2. Avise J.C., 2004. Molecular markers, natural history, and evolution (Second edition). Sinauer, Sunderland, MA.
  3. Burban C., R.J. Petit. 2003. Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Molecular Ecology 12(6): 1487-1495. https://doi.org/10.1046/j.1365-294X.2003.01817.x
  4. Chang, C.S., J.I. Jeon and J.O. Hyun. 1997. An analyasis of morphological variation in Abies koreana Wilson and A. nephrolepis (Traut.) Maxim. of Korea (Pinaceae) and their phylogenetic problems. Journal of Korean Forestry Society 86: 378-390. (in Korean)
  5. Chung T.H. 1958. Korean Flora. Vol. 1. Woody plants. Shinjisa, Seoul. (in Korean)
  6. Clement, M., D. Posada and K. Crandall. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9(10): 1657-1660. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  7. Dobson, M., Y. Kawamura. 1998. Origin of the japanese land mammal fauna: allocation of extant species to historicallybased categories. The Quaternary Research 37(5): 385-395. https://doi.org/10.4116/jaqua.37.385
  8. Du, F.K., R.J. Petit and J.Q. Liu. 2009. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Molecular Ecology 18(7): 1396-1407. https://doi.org/10.1111/j.1365-294X.2009.04107.x
  9. Edgar, R.C., 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 1-19. https://doi.org/10.1186/1471-2105-5-1
  10. Excoffier, L., G. Laval, S. Schneider. 2005. Arlequin var. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47-50.
  11. Farjon, A., 1990. Pinaceae: drawings and descriptions of the genera Abies, Cedrus, pseudolarix, Keteleria, Nothotsuga, tsuga, Cathaya, Pseudotsuga, Larix and Picea. Konigstein: Koeltz Scientific Books.
  12. Han, T.I. 2003. An anatomical tudy of cross section needles of Abies koreana and A. nephrolepis. MS thesis. Kong Ju National University. (in Korean)
  13. Hong, Y.P., J.Y. Ahn, Y.M. Kim, B.H. Yang and J.H. Son. 2011. Genetic variation of nSSR markers in natural populations of Abies koreana and Abies nephrolepis in South Korea. Journal of Korean Forestry Society 100(4): 577-584. (in Korean)
  14. Jaramillo-Correa, J.P., E. Aquirre-Planter, D.P. Khasa, L.E. Equiarte, D. Pinero, G.R. Furnier and J. Bousquet. 2008. Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus Abies (Pinaceae) in southern Mexico and Guatemala. Molecular Ecology 17(10): 2476-2490. https://doi.org/10.1111/j.1365-294X.2008.03762.x
  15. Jung, Y.H., S.H. Han, Y.S. Oh, M.H. Ko, S.C. Koh, M.H. Kim and M.Y. Oh. 2000. Genetic variation and phylogenetic analysis of genus Abies Distributed in Korea based on RAPD and nuclear rDNA ITS2 sequences. Korean Journal of Genetics 22(4): 341-354. (in Korean)
  16. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
  17. Kim, I.S., J.O. Hyun. 2000. Genetic diversity of Abies koreana Wilson based on RAPD analysis. Korean Journal of Breeding Science 32(1): 12-18. (in Korean)
  18. Kim, J.M., J.P. Kennett, B.K. Park, D.C. Kim, G.Y. Kim and E.B. Roark. 2010. Paleoceanographic change during the last deglaciation, East sea of Korea. Paleoceanography 15(2): 254-266. https://doi.org/10.1029/1999PA000393
  19. Kim, Y.D., S.S. Kim, 1983. Studies on the Morphological and anatomical characteristics of genus Abies in Korea. Journal of Korean Forestry Society 62: 68-75. (in Korean)
  20. Kimura, M. 2000. Paleogeography of the Ryukyu islands. Tropics 10(1): 5-24. https://doi.org/10.3759/tropics.10.5
  21. Kong, W.S. 2004. Species composition and distribution of native korean conifers. Journal of the Korean Geographical Society 39(4): 528-543.
  22. Kormutak, A., Y.P. Hong, H.Y. Kwon and C.S. Kim. 2007. Variation in trn-L/trn-V and trn-F/trn-T spacer regions of cpDNA in Abies koreana Wilson and A. nephropepis Traut./Maxim. Journal of Korean forest Society 96(2): 131-137.
  23. Lee, S.W., B.H. Yang, S.D. Han, J.H. Song, J.J. Lee, 2008. Genetic variation in natural populations of Abies nephrolepis Max. in South Korea. Annals of forest Science 65: 302. https://doi.org/10.1051/forest:2008006
  24. Lee, W.T. 1996. Coloured standard illustrations of korean plant. Academy Publishing Co., Seoul. (in Korean)
  25. Liepelt, S., E. Mayland-Quellhorst, M. Lahme, B. Ziegenhagen. 2010. Contrasting geographical patterns of ancient and modern genetic lineages in mediterranean Abies species. Plant Systematics and Evolution 284: 141-151. https://doi.org/10.1007/s00606-009-0247-8
  26. Liepelt, S., R. Bialozyt, B. Ziegenhagen. 2002. Wind-dispersed pollen mediates postglacial gene flow among refugia. Proceedings of the National Academy of Sciences 99(22): 14590-14594. https://doi.org/10.1073/pnas.212285399
  27. Meng, L., R. Yang, R.J. Abbott, G. Miehe, T. Hu and J. Liu. 2007. Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai-Tibetan plateau and adjacent highlands. Molecular Ecology 16: 4128-4137. https://doi.org/10.1111/j.1365-294X.2007.03459.x
  28. Naydenov, K., S. Senneville, J. Beaulieu, F. Tremblay and J. Bousque. 2007. Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evolutionary Biology 7: 233. https://doi.org/10.1186/1471-2148-7-233
  29. Neale, D.B. and R.R. Sederoff. 1989. Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theoretical and Applied Genetics 77: 212-216.
  30. Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.
  31. Peng, Y., S. Yin, J. Wang, B. Tian, G. Ren, Q. Guo and J. Liu. 2012. Phylogeographic analysis of the fir species in southern China suggests complex origin and genetic admixture. Annals of Forest Science 69(3): 409-416. https://doi.org/10.1007/s13595-011-0170-3
  32. Pons, O. and R.J. Petit. 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics Society of America 144: 1237-1245.
  33. Semerikova, S. A. and V. L. Semerikov. 2014. Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA. Russian Journal of Genetics 50(1): 7-19. https://doi.org/10.1134/S1022795414010104
  34. Song, J.H., J.J. Lee and K.S. Kang. 2008. Variation in cone, seed, and bract morphology of Abies nephrolepis (Trautv.) Maxim. and A. koreana Wilson in native forests. Journal of Korean Forestry Society 97: 565-569. (in Korean)
  35. Song, J.H., J.J. Lee, K.Y. Lee, J.C. Lee and Y.Y. Kim. 2007. Variation in needle morphology of natural populations of Abies nephrolepis Maxim. and A. Koreana Wilson in Korea. Journal of Korean Forestry Society 96: 387-392. (in Korean)
  36. Sun, Y.B. 2007. Pinaceae in the genera of vascular plants of Korea. flora of Korean Editorial committee (eds.), Academy Puyblishing Co., Seoul. p.119.
  37. Wagner, D.B. 1992. Nuclear, chloroplast and mitochondrial DNA polymorphisms as biochemical markers in population genetic analysis of forest trees. New Forests 6: 373-390. https://doi.org/10.1007/BF00120653
  38. Wang, J., R.J. Abbott, Y.L. Peng, F.K. DU and J.Q. Liu. 2011. Species delimitation and biogeography of two fir species (Abies) in central China: cytoplasmic DNA variaition. Heredity 107: 362-370. https://doi.org/10.1038/hdy.2011.22
  39. Wang, X.Q., D.C. Tank and T. Sang. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17(5): 773-781. https://doi.org/10.1093/oxfordjournals.molbev.a026356
  40. Wilson, E.H. 1920. Four new conifers from Korea. Journal of the Arnold Arboretum 1: 186-190.
  41. Wu, J., Krutovskii K.V. and Strauss S.H. 1998. Abundant mitochondiral genome diversity, population differentiation and convergent evolution in Pines. Genetics Society of America 150(4): 1605-1614.
  42. Xiang, Q.P., R. Wei, Y.Z. Shao, Z.Y. Yang, X.Q. Wang and X.C. Zhang. 2015. Phylogenetic relationships, possible ancient hybridization, and biogeographic history of Abies (Pinaceae) based on data from nuclear, plastid, and mitochondrial genomes. Molecular Phylogenetics and Evolution 82: 1-14. https://doi.org/10.1016/j.ympev.2014.10.008
  43. Yoon, S.O., S.I. Hwang. 2009. The Resconstruction of natural environment for the last glacial maximum around Korea and adjacent area. Jurnal of the korean geomorphological association 16(3): 101-112.
  44. Ziegenhagen, B., B. Fady, V. Kuhlenkamp and S. Liepelt. 2005. Differentiating groups of Abies species with a simple molecular marker. Silvae Genetica 54(3): 123-126.

Cited by

  1. Genetic assessment of Abies koreana (Pinaceae), the endangered Korean fir, and conservation implications vol.18, pp.5, 2017, https://doi.org/10.1007/s10592-017-0968-0
  2. 2017~2018년 말레이즈 트랩을 이용한 남한 내 야생벌(벌목: 벌아목)의 시·공간별 출현 및 분포 현황 vol.33, pp.6, 2019, https://doi.org/10.13047/kjee.2019.33.6.654