• 제목/요약/키워드: nActivated Carbon

Search Result 368, Processing Time 0.022 seconds

Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon (영가철이 고정된 입상활성탄 제조를 위한 최적 합성조건 도출)

  • Hwang, Yuhoon;Mines, Paul D.;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.521-527
    • /
    • 2016
  • Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing Fe/GAC composite were suggested. Both total iron content and $Fe_0$ content can be significantly affected by preparation processes, therefore, it was important to avoid oxidation during preparation to achieve higher reduction capacity. Synthesis conditions such as reduction time and existence of intermediate drying step were investigated to improve $Fe_0$ content of Fe/GAC composites. The optimal condition was two hours of $NaBH_4$ reduction without intermediate drying process. The prepared Fe/GAC composite showed synergistic effect of the adsorption capability of the GAC and the degradation capability of the nZVI, which make this composite a very effective material for environmental remediation.

The Preparation of $TiO_2$ Coated Activated Carbon Pellets Driven by LED and Removal Characteristics of VOCs (LED구동 $TiO_2$ 코팅 활성탄소 펠렛 제조 및 VOCs 제거 특성)

  • Kim, Yesol;Kim, Do Young;Jung, Min-Jung;Kim, Min Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.314-319
    • /
    • 2013
  • In this study, nitrogen doped $TiO_2$ ($N-TiO_2$) coated on an activated carbon pellet (ACP) was prepared using sol-gel and the solid state heat treatment of urea to improve the removal property of volatile organic compounds (VOCs). To explore the visible light photocatalytic activity of the ACP under the light emitting diods (LED), the removal property of benzene gas was characterized by gas chromatography. The SEM and BET results show that the increment of titanium tetra isopropoxide contents leads to the increased $TiO_2$ coating amount of ACP surface and decreased specific surface area. From the results of benzene gas removal, the breakthrough time of ACP10 increased about 2 times compared to that of the ACP. The improved performance was attributed to the $N-TiO_2$ coating on ACP surface, which could be more effective to remove benzene gas under the condition of LED lamp.

The Effects of PAC (Powdered Activated Carbon) on Water Treatment Performance of an Immersed Membrane System Using Flat-sheet Membrane Module (평막을 이용한 침지형 막여과시스템에서 고농도 분말활성탄 주입에 의한 수처리성능 개선 효과)

  • Gai, Xiang-Juan;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.195-201
    • /
    • 2007
  • A submerged flat-sheet membrane separation system integrated with PAC (powdered activated carbon) was used in this research in order to investigate the effects of PAC on the efficiencies of operation and treatment and to evaluate the performance of the system. The experiments were carried out under operating conditions of a filtration rate of 0.38 m/d, water temperature of $20-28^{\circ}C$, and PAC dose of 0 g/L (Run-A) and 20 g/L (Run-B). The influent concentrations of TOC (total organic carbon), $NH_4{^+}-N$ (ammonia nitrogen) and $UV_{254}$ (UV absorbance at 254 nm) were 2.48 mg/L, 1.4 mg/L and 2.53 1/m, respectively. TOC removal of 43.2 and 73.6%, ammonia nitrogen removal of 4.9 and 15.9%, and $UV_{254}$ removal of 20.6 and 31.6% were obtained for Run-A and Run-B, respectively. During an experimental period of 33 days, no change was found in TMP (Run-B), but the TMP in Run-A increased by 5 kPa after 29 days. This research showed that the filtrate quality and the performance efficiency were enhanced when PAC was introduced into the filtration system.

Application of MBR process for the treatment of RO concentrate from wastewater reuse process (하수재이용 공정에서 발생되는 RO농축수 처리를 위한 MBR 공정 적용)

  • Lee, Do-Hun;Jang, Hyun-Ji;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.339-349
    • /
    • 2013
  • Biological treatment of RO concentrate from wastewater reuse process is known to be very difficult due to its high concentration of non-degradable organics and salt ions such as chloride, nitrate and phosphate. In this research, the treatment performance of MBR was examined using RO concentrate mixed with raw wastewater as the influent of MBR. Addition of PAC (powdered activated carbon) to MBR was also evaluated in order to enhance the treatment performance and stability. The performance of MBR for treating only RO concentrate decreased gradually although external carbon source was added. The average removal performance of MBR with and without PAC decreased from 99.1 %(98.8 %) to 94.9 %(91.4 %) for COD, 81.3 %(80.3 %) to 42.0 %(41.9 %) for T-N and 57.3(55.0 %) to 30.0 %(21.0 %) for T-P with the increase of RO concentrate mixing rate of 0 % to 20 % in the feed water. Addition of PAC showed positive effect on the performance of MBR for the removal of COD and phosphorus in case that the ratio of RO concentrate to feed water increased.

Ozone-Activated Carbon Treatment in Middle Keum River containing Ammonia-Nitrogen (암모니아성질소를 함유한 금강중류 하천수의 오존-활성탄처리)

  • Kim, Chung-Hwan;Jung, Sang-Gi;Kim, Hag-Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.355-363
    • /
    • 2002
  • A demonstration plant was carried out to investigate the removal efficiency of $NH_3-N$ and $KMnO_4$ consumption depending on the existence of pre-chlorination for the ozonation and activated carbon process in the S water treatment plant which is located at the middle of Keum River. The averge removal efficiency of $KMnO_4$ consumption for $O_3/GAC$ processes with pre-chlorination and $O_3/BAC$ processes without pre-chlorination were 48.6% and 50% respectively. It is similar to removal effect of $KMnO_4$ consumption for GAC and BAC process depending on the existence of pre-chlorination. Otherwise, the removal of THMFP for GAC and BAC process was 58% and 68% respectively. $NH_3-N$ was not almost removed by sand filter and ozonation, but the average removal efficiency in the BAC process was about 31%. Especially, $NH_3-N$ was not almost removed by $O_3/BAC$ processes at the low temperature (below $$10^{\circ}C$$) in the winter season, $O_3/BAC$ processes have the advantage of removal of organic substance when it is compared to pre -chlorination followed by $O_3/GAC$ processes. Pre-chlorination followed by $O_3/GAC$ processes were required to remove $NH_3-N$ in the winter season because the removal of $NH_3-N$ was almost ineffective by $O_3/BAC$ process.

Evaluation and Comparative Physical/Biological Removal Performance for Extremely Low-Concentration NDMA(N-nitrosodimethylamine) (극저농도 NDMA(N-nitrosodimethylamine) 물리적/생물학적 처리 효율 비교 평가)

  • Park, Seyong;Kim, Hui Joo;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.55-61
    • /
    • 2011
  • NDMA(N-Nitrosodimethylamine) has been considered as a carcinogenic pollutant even at extremely low-concentration (10ng/L). However, previous researches on NDMA have focused on mainly high concentration due to a difficulty of analysis. In this study, removal efficiencies were evaluated for individual or combined methods with PAC(Powder Activated Carbon), GS(Granular Sludge), MF(Microfiltration), UF(Ultrafiltration) and Silica gel(MCM-41, Diatomite, Spherical silica gel) at both aerobic and anaerobic conditions. Combined method of GS, PAC and UF membrane at anaerobic condition showed the highest removal efficiency of 65% while Silica gel showed the lowest removal efficiency of 6%. The outcomes of this study could be used further study of extremely low-concentration NDMA removal.

Effective Treatment System for the Leachate from a Small-Scale Municipal Waste Landfill (소규모 쓰레기 매립장 침출수의 효율적인 처리 방안에 관한 연구)

  • Cho Young-Ha;Kwon Jae Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.51-65
    • /
    • 2002
  • This study was carried out to apply some basic physical and chemical treatment options including Fenton's oxidation, and to evaluate the performances and the characteristics of organic and nitrogen removal using lab-scale biological treatment system such as complete-mixing activated sludge and sequencing batch reactor(SBR) processes for the treatment of leachate from a municipal waste landfill in Gyeongnam province. The results were as follows: Chemical coagulation experiments using aluminium sulfate, ferrous sulfate and ferric chloride resulted in leachate CO $D_{Cr}$ removal of 32%, 23% and 21 % with optimum reaction dose ranges of 10,000~15,000 mg/$\ell$, 1,000 mg/$\ell$ and 500~2,000 mg/$\ell$, respectively. Fenton's oxidation required the optimum conditions including pH 3.5, 6 hours of reaction time, and hydrogen peroxide and ferrous sulfate concentrations of 2,000 ~ 3,000 mg/$\ell$ each with 1:1 weight ratio to remove more than 50% of COD in the leachate containing CO $D_{Cr}$ between 2,000 ~ 3,000 mg/$\ell$. Air-stripping achieved to remove more than 97% of N $H_3$-N in the leachate in spite of requiring high cost of chemicals and extensive stripping time, and, however, zeolite treatment removing 94% of N $H_3$-N showed high selectivity to N $H^{+}$ ion and much faster removal rate than air-stripping. The result from lab-scale experiment using a complete-mixing activated sludge process showed that biological treatability tended to increase more or less as HRT increased or F/M ratio decreased, and, however, COD removal efficiency was very poor by showing only 36% at HRT of 29 days. While COD removal was achieved more during Fenton's oxidation as compared to alum treatment for the landfill leachate, the ratio of BOD/COD after Fenton's oxidation considerably increased, and the consecutive activated sludge process significantly reduced organic strength to remove 50% of CO $D_{Cr}$ and 95% of BO $D_{5}$ . The SBR process was generally more capable of removing organics and nitrogen in the leachate than complete-mixing activated sludge process to achieve 74% removal of influent CO $D_{Cr}$ , 98% of BO $D_{5}$ and especially 99% of N $H_3$-N. However, organic removal rates of the SBR processes pre-treated with air-stripping and with zeolite were not much different with those without pre-treatment, and the SBR process treated with powdered activated carbon showed a little higher rate of CO $D_{Cr}$ removal than the process without any treatment. In conclusion, the biological treatment process using SBR proved to be the most applicable for the treatment of organic contents and nitrogen simultaneously and effectively in the landfill leachate.e.

Manufacturing Activated Carbon from Rice Shell or Saw Dust and Their Adsorption Performance for the Surfactants (왕겨 및 톱밥을 이용한 활성탄 제조 및 계면활성제 흡착성능)

  • KIM, T.Y.;Baek, I.H.;Yun, Y.G.;Jeong, N.H.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.79-90
    • /
    • 1998
  • One of the objectives of this study were to develop a process for manufacturing activated carbons from agricultural by-products(rice shells and saw dust) and another is to measure the iodine number, ash content and removal ratio of COD. The other is to compare those values with those of commercialized activated carbons. Agricultural by-products based activated carbons were manufactured through the steam-reaction method. A rotary kiln type furnace was used for both carbonization and activation. The optimum operating temperatures for carbonization and activation were $650^{\circ}C$ and $900^{\circ}C$, respectively. For the activated carbons produced under these conditions, the iodine number was 1,127mg/g. Especially, removal efficiency of COD was 61.5% for 40mg/L of wastewater and 30% for 150mg/L of SLS(Sodium Lauryl Sulfate).

Nitrogen and Phosphorus Removal from Plating Wastewater Using the Soil Reactor (토양 반응조를 이용한 도금폐수 중의 질소 및 인 제거)

  • Cheong, Kyung-Hoon;Choi, Hyung-Il;Shin, Dae-Yun;Im, Byung-Gab;Jeon, Gee-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.205-213
    • /
    • 2009
  • A laboratory experiment was conducted to investigate nitrogen removal from plating wastewater by a soil reactor. A combination of soil, waste oyster shell and activated sludge were used as a loading media in a soil reactor. The addition of 20% waste oyster shell and activated sludge to the soil accelerated nitrification (88.6% ${NH_4}^{+}-N$ removal efficiency) and denitrification (84.3% ${NO_3}^{-}-N$ removal) in the soil reactor, respectively. In continuous removal, the influent ${NH_4}^{+}-N$ was mostly converted to nitrate nitrogen in the nitrification soil reactor and only a small amount of ${NH_4}^{+}-N$ was found in the effluent. When methanol was added as a carbon source to the denitrification soil reactor, the average removal efficiency of ${NO_3}^{-}-N$ significantly increased. The ${NO_3}^{-}-N$ removal by methanol addition in the denitrification soil reactor was mainly due to denitrification. The phosphorus was removed by the waste oyster shell media in the nitrification soil reactor. Moreover, the phosphorus removal in the denitrification soil reactor was achieved by synthesis of bacteria and the denitrification under anaerobic conditions. The approximate number of nitrifiers and denitrifiers was $3.3{\times}10^5\;MPN/g$ soil at a depth of $1{\sim}10\;cm$ and $3.3{\times}10^6\;MPN/g$ soil at a depth of $10{\sim}20\;cm$, respectively, in the soil reactor mixed with a waste oyster shell media and activated sludge.

Sampling efficiencies of the activated carbon fiber and 3M diffusive samplers for organic vapors (공기중 유기용제 측정을 위한 활성탄섬유 확산포집기와 3M 확산포집기의 시료포집효율에 대한 연구)

  • Byeon, Sang-Hoon;Oh, Se-Min;Lee, Chang-Ha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.21-31
    • /
    • 1997
  • Toluene, n-hexane, and methyl ethyl ketone(MEK) were exposed to the activated carbon fiber(ACF) and 3M(Model 3500) diffusive samplers under low and high humidity levels. In order to evaluate these two samplers, the sampling capacity, sampling rate, reverse diffusion, and storage stability were obtained. At low humidity level($8{\pm}3%RH$), the adsorption amount of all three organic vapors to the ACF diffusive sampler showed a positive linear relationship up to 8 hours. However, at high humidity level($90{\pm}5%RH$), n-hexane and MEK maintained a positive linear relationship up to 1.5 hrs, but decreased in their adsorption amounts afterwards. On the other hand, the adsorption amount of n-hexane, MEK, and toluene to 3M diffusive sampler showed almost a positive linear relationship up to 8 hours at both humidity levels. At low humidity level, there was almost no reverse diffusion for both 3M and ACF diffusive samplers. However, when the ACF diffusive sampler was used at high humidity level, there was about 52.63% of MEK sample loss and about 92.59% of n-hexane sample loss. The storage stabilities of the ACF and 3M diffusive samplers were both relative stable except for MEK. In the case of MEK, the difference between the analysis of the organic vapor right after the sampling and that of 3 weeks later at room temperature was 45% for the ACF diffusive sampler and 18% for the 3M diffusive sampler. Since the storage stability of the samples stored in a refrigerator was relatively stable, they need to be refrigerated until the analysis is done.

  • PDF