• Title/Summary/Keyword: nActivated Carbon

Search Result 368, Processing Time 0.021 seconds

Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites

  • El Said, Nessem;Kassem, Amany T.
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.327-334
    • /
    • 2018
  • The nano/micro composites with highly porous surface area have attracted of great interest, particularly the synthesis of porous and thin film sheets of high performance. In this paper, an easy method of cost-effective synthesis of thin film ceramic fiber membranes based on Hydroxyapatite, and activated carbon by turned into studied to be applied within the service-facilitated the transport of radioactive waste such as $^{90}Sr$, $^{137}Cs$ and $^{60}Co$) as activated product of radioisotopes from ETRR-2 research reactor and dissolved in 3M $HNO_3$, across a thin flat-sheet supported liquid membrane (TFSSLM). Radionuclides are transported from alkaline pH values. The presence of sodium salts in the aqueous media improves in $HNO_3$, the lowering of permeability because the initial $HNO_3$ concentration is improved. The study some parameters on the thin sheet ceramic supported liquid membrane. EDTA as stripping phase concentration, time of extraction and temperature were studied. The study of maximum permeability of radioisotopes for all parameters. The pertraction of a radioactive waste solution from nitrate medium were examined at the optimized conditions. Under the optimum experimental 98.6-99.9% of $^{90}Sr$, 79.65-80.3% of $^{137}Cs$ and $^{60}Co$ 45.5-55.5% in 90-110 min with were extracted in 10-30 min, respectively. The process of diffusion in liquid membranes is governed by the chemical diffusion process.

Manufacture of Activated Carbon Using Livestock Manure and it's Odor Absorptiveness (축분을 이용한 활성탄소 제조와 이의 악취 흡착성 분석)

  • Choi, H.C.;Song, J.I.;Kwon, D.J.;Kwag, J.H.;Yan, C.B.;Yoo, Y.H.;Park, Young-Tae;Park, K.S.;Park, D.K.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.211-218
    • /
    • 2007
  • This study was carried out to develop the technique for manufacturing activated carbon from livestock manure and to analyse it's odor absorptiveness. Each of layer manure(LM), litter from broiler house(BL) and litter from dairy barn(DL), compost from layer manure(LC) and pig manure(PC), and coconut shell(CS) was used as a raw material. Activated carbon by grinding the raw material, adding the coal tar as a binder, palletizing, drying, heating with $N_2$ gas at $400^{\circ}C$ for 1 hour, activating by reaction with steam at a temperature of $750^{\circ}C$ for 1 hour. Moisture contents of raw material was 44.9% in layer compost, 71.9% in layer manure, 24.4% in broiler litter, 47% in pig manure compost and 33.9% in dairy litter. Volatile matter in layer compost, layer manure, broiler litter, pig manure compost and dairy litter was 18.8%, 31.0%, 49.8%, 22.3% and 11.6%, respectively. Surface area(BET) of activated carbon from layer compost, layer manure, broiler litter, pig manure compost, dairy litter and coconut shell was 259.8, 209.8, 63.5, 442.3, 812.9 and $1,040\;m^2/g$, respectively. Activated carbon made by livestock manure or litter were examined with scanning electron microscope, and micropore was a type of sponge like particles honeycombed with chambers. Pore size of activated carbon was ranged from 0.39 to $5.02\;{\AA}$, but coconut shell was $0.30\;{\AA}$. Iodine absorptiveness of activated carbon from livestock manure was $530{\sim}580mg/g$. But activated carbon made by coconut shell was 1000 mg/g. Each activated carbon could absorb odor compound very well. Absorptiveness of activated carbon from layer manure for hydrogen sulfide and trimethyl amino was 74.5% and 73.9% at the accumulated flux of 60,000 ml, but, in the case of ammonia was only 15.2% at the accumulated flux of 10,000 ml

  • PDF

Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers (표면 처리에 따른 입상활성탄 및 활성탄소섬유의 중금속 흡착)

  • Kang, Kwang Cheol;Kwon, Soo Han;Kim, Seung Soo;Choi, Jong Won;Chun, Kwan Sik
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.285-289
    • /
    • 2006
  • In this study, the effect of an acidic treatment on granular activated carbon (GAC) and activated carbon fibers (ACF) was investigated for a $Pb^{2+}$ and $Ni^{2+}$ ion adsorption. 1.0 M nitric acid solution was used as the acid solution for the surface treatment. Surface properties of the GAC and ACF were characterized by the pH, elemental analysis and pHpzc (pH of the point of zero charge). Their specific surface area and the pore structure were also evaluated by the nitrogen adsorption data at 77K. As a result, the acidic treatment led to an increase of the oxygen-containing functional groups. Furthermore, the adsorption capacity of the acid-treated GAC and ACF was improved in the order of acidic-ACF > untreated-ACF > acidic-GAC > untreated-GAC, though the decrease in specific surface area induced by a pore blocking of the functional groups was observed.

A Study of the Optimum Pore Structure for Mercury Vapor Adsorption

  • Kim, Byung-Joo;Bae, Kyong-Min;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1507-1510
    • /
    • 2011
  • In this study, mercury vapor adsorption behaviors for some kinds of porous materials having various pore structures were investigated. The specific surface area and pore structures were studied by BET and D-R plot methods from $N_2$/77 K adsorption isotherms. It was found that the micropore materials (activated carbons, ACs) showed the highest mercury adsorption capacity. In a comparative study of mesoporous materials (SBA-15 and MCM-41), the adsorption capacity of the SBA-15 was higher than that of MCM-41. From the pore structure analysis, it was found that SBA-15 has a higher micropore fraction compared to MCM-41. This result indicates that the mercury vapor adsorptions can be determined by two factors. The first factor is the specific surface area of the adsorbent, and the second is the micropore fraction when the specific surface areas of the adsorbent are similar.

Preparation and characterization of microporous NaOH-activated carbons from hydrofluoric acid leached rice husk and its application for lead(II) adsorption

  • Hassan, A.F.;Youssef, A.M.
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2014
  • Three activated carbons (ACs) were prepared using NaOH (N) as an activating agent. Hydrofluoric acid pre-leached rice husk was used as a precursor. After leaching, the precursor was washed with distilled water, dried, crushed, and then sieved; a size fraction of 0.3-0.5 mm was selected for carbonization in the absence of air at $600^{\circ}C$. The carbonization product (LC) was mixed with NaOH at ratios of 1:2, 1:3, and 1:4 (wt of LC: wt of NaOH) and the produced ACs after activation at $800^{\circ}C$ were designated NLC21, NLC31, and NLC41, respectively. Surface and textural properties were determined using nitrogen adsorption at $-196^{\circ}C$, scanning electron microscopy images, thermogravimetric analysis, and Fourier transform infrared spectra. These ACs were used as adsorbents for lead(II) from aqueous solutions. The effects of the textural properties and the chemistry of the carbon surfaces were investigated and the impact of the operation conditions on the capacity for lead(II) sorption was also considered. Modification of NLC41 with $H_2O_2$ and $HNO_3$ gave two other adsorbents, $H_{NLC41}$ and $N_{NLC41}$ respectively. These two new samples exhibited the highest removal capacities for lead(II), i.e.117.5 and 128.2 mg/g, respectively. The adsorption data fitted the Langmuir isotherm and the kinetic adsorption followed pseudo-second order kinetics. The thermodynamic parameters have been determined and they indicated a spontaneous endothermic process.

Effect of Initial Adsorbed Amount, Temperature, and pH on the Desorption of Phenol from Activated Carbon by Organic Solvents (초기 흡착량, 온도, pH가 활성탄 피흡착물인 페놀의 유기용매 탈착에 미치는 영향에 대한 연구)

  • Kim, Seungdo;Oh, Young-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1985-1994
    • /
    • 2000
  • This research was designed to investigate the effect of initial adsorbed amount of phenol, temperature, and pH on the desorption reaction of phenol from spent activated carbon loaded with phenol. Methanol, acetone, and N,N-dimethylformamide( DMF) were used as test organic solvents. The initial adsorbed quantities of phenol investigated here were 166.1mg/g, 180.7mg/g, and 197.9mg/g. The effect of temperature was evaluated from 15 to $55^{\circ}C$ with an interval of $10^{\circ}C$, while that of pH was investigated under acidic. neutral. and alkaline conditions. The extent of phenol desorption was proportional to the strength of dipole moment such as methanol < acetone < DMF. Over 90% desorption of phenol was achieved by acetone and DMF. The quantity of des orbed phenol by the organic solvents decreases with increasing the initial adsorbed amount of phenol. DMF is affected least by the initially adsorbed amount of phenol. An increase in reaction temperature leads to higher desorption of phenol. Desorption reaction by methanol is most sensitive to the temperature. As the pH of solvents increases. the desorption rate is also increasing. At pH=12. the desorption rate of phenol by methanol increases sharply by 10%. Although methanol demonstrated the weakest desorption power. the desorption capacity of methanol would approach that of acetone and DMF by adjusting temperature and pH. Methanol may emerge as a promising solvent for removing phenol from activated carbon because of acceptable regeneration efficiency as well as relatively cheap price.

  • PDF

Synthesis and Characterization of Fe-containing AC/TiO2 Composites and Their Photodegradation Effect for the Piggery Waste

  • Oh, Won-Chun
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • In this present study, we have synthesized Fe-containing AC(activated carbon)/$TiO_2$ composites with titanium (VI) n-butoxide (TNB) as a titanium source to Fe treated AC through an impregnation method. The result of the textural surface properties demonstrates that there is a slight decrease in the BET surface area of composite samples with an increase of the amount of Fe treated. The surface properties of scanning electron microscope (SEM) presented a characterization of a porous texture on the Fe-containing AC/$TiO_2$ composites and homogenous compositions for Fe and titanium dioxide distributed on the sample surfaces. Fe compound peaks and a titanium dioxide structure were observed in the X-ray diffraction patterns for the Fe-containing AC/$TiO_2$ composites. The results of chemical elemental composition for the Fe-containing AC/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for C, O, treated Fe components and Ti metal than that of any other elements. From the photo degradation results for the piggery waste, the Fe-containing AC/$TiO_2$ composites showed an excellent degradation activity for the chemical oxygen demand (COD) due to a photocatalysis of the supported $TiO_2$, radical reaction by Fe species and the adsorptivity and absorptivity of porous carbon.

Molecular Sieve Properties for $CH_4/CO_2$ of Activated Carbon Fibers Prepared by Benzene Deposition (벤젠 증착에 의해 제조된 활성탄소섬유의 $CH_4/CO_2$ 분자체 성질)

  • Moon, Seung-Hyun;Shim, Jae-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.614-619
    • /
    • 2005
  • The activated carbon fibers of different surface area and pore structures were modified by carbon deposition from the pyrolysis of benzene, in an attempt to obtain carbon molecular sieves of high adsorption capacity and selectivity for the separation of $CO_2/CH_4$ gas mixtures. The ACFs molecular sieves prepared from different temperature and time were tested by the static adsorption of $CO_2$ and $CH_4$ gas, and their pore structures were characterized by the $N_2$ adsorption isotherms. We are able to prepare ACF molecular sieve with good selectivity for $CO_2/CH_4$ separation and showing acceptable adsorption capacities from the change of porosity by carbon deposition of pyrolyzed benzene.

Adsorption Characteristics and Thermodynamic Parameters of Acid Fuchsin on Granular Activated Carbon (입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • The adsorption of Acid Fuchsin (AF) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetics and thermodynamic parameters by experimenting with the initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH effect experiment, the adsorption of AF on activated carbon showed a bathtub type with increased adsorption at pH 3 and 11. The adsorption equilibrium data of AF fit well with the Freundlich isotherm model, and the calculated separation factor (1/n) value was found in which activated carbon can effectively remove AF. The pseudo-second-order kinetic model fits well within 7.88% of the error percent in the adsorption process. According to Weber and Morris's model plot, it was divided into two straight lines. The intraparticle diffusion rate was slow because the stage 2 (intraparticle diffusion) slope was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was a rate-controlling step. The activation energy of AF (13.00 kJ mol-1) corresponded to the physical adsorption process (5 - 40 kJ mol-1). The free energy change of the AF adsorption by activated carbon showed negative values at 298-318 K. As the spontaneity increased with increasing temperature. The adsorption of AF was an endothermic reaction (ΔH = 22.65 kJ mol-1).

Effect of potassium permanganate pretreatment of pitch on the textural properties of pitch-based activated carbons

  • Kim, Dae-Won;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.167-170
    • /
    • 2011
  • Petroleum pitch-based activated carbons (ACs) were obtained in this work from a combination of pretreatment with different amounts of potassium permanganate ($KMnO_4$) and chemical activation with potassium hydroxide. The surface characteristics of the pitch after the $KMnO_4$ pretreatment were characterized by means of Fourier transform infrared spectroscopy (FT-IR). The structural characteristics of the pitch after the $KMnO_4$ pretreatment were determined by means of X-ray diffraction. The influence of the $KMnO_4$ treatment on the textural properties of the petroleum pitch-based ACs was investigated by means of $N_2$/77K adsorption isotherms. The investigation also involved the use of the Brunauer-Emmett-Teller equation and the Dubinin-Radushkevich method. The FT-IR results show that the pretreatment promotes the formation of surface oxygen functionalities and leads to an increase of the interplanar distance ($d_{002}$) of the functional groups induced between carbon layers. Moreover, the specific surface area of the pitch-based ACs increases in proportion to the amount of $KMnO_4$ pretreatment and reaches its highest value of 2334 $m^2$/g with 2 g of $KMnO_4$ because the surface oxygen groups of the pitch act as an active site during chemical activation.