• Title/Summary/Keyword: n-type substrate

Search Result 500, Processing Time 0.029 seconds

Analysis of the Effect of the Substrate Removal and Chip-Mount Type on Light Output Characteristics in InGaN/Sapphire LEDs (InGaN/Sapphire LED에서 기판 제거 유무와 칩 마운트 타입이 광출력 특성에 미치는 영향)

  • Hong, Dae-Woon;Yoo, Jae-Keun;Kim, Jong-Man;Yoon, Myeong-Jung;Lee, Song-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.381-385
    • /
    • 2008
  • We have analyzed the effect of the substrate removal and packaging schemes on light output characteristics in InGaN/Sapphire LEDs. The removal of the sapphire substrate helps to dissipate the heat generated in the junction, but the advantage comes only with the detrimental effect of degrading the photon extraction efficiency. If the substrate-removed chip is attached to a metallic mount with good thermal conductivity, the maximum driving current is increased drastically, producing significantly increased light output and therefore compensating the photon extraction efficiency degradation. On a dielectric mount with a relatively poor thermal conductivity, however, it produces smaller light output, over most input current range, than the regular type of chips with the sapphire substrate remaining. Thus, for low power applications, the regular chips may be preferred over the substrate-removed chips, regardless of the chip mounts employed.

Improvement in Light Extraction Efficiency of 380 nm UV-LED Using Nano-patterned n-type Gan Substrate (나노 구조의 패턴을 갖는 n-type GaN 기판을 이용한 380 nm UV-LED의 광 추출 효율 개선)

  • Baek, Kwang-Sun;Jo, Min-Sung;Lee, Young-Gon;Sadasivam, Karthikeyan Giri;Song, Young-Ho;Kim, Seung-Hwan;Kim, Jae-Kwan;Jeon, Seong-Ran;Lee, June-Key
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.273-276
    • /
    • 2011
  • Ultraviolet (UV) light emitting diodes (LEDs) were grown on a patterned n-type GaN substrate (PNS) with 200 nm silicon-di-oxide (SiO2) nano pattern diameter to improve the light output efficiency of the diodes. Wet etched self assembled indium tin oxide (ITO) nano clusters serve as a dry etching mask for converting the SiO2 layer grown on the n-GaN template into SiO2 nano patterns by inductively coupled plasma etching. PNS is obtained by n-GaN regrowth on the SiO2 nano patterns and UV-LEDs were fabricated using PNS as a template. Two UV-LEDs, a reference LED without PNS and a 200 nm PNS UV-LEDs were fabricated. Scanning Electron microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Photoluminescence (PL) and Light output intensity- Input current- Voltage (L-I-V) characteristics were used to evaluate the ITO-$SiO_2$ nanopattern surface morphology, threading dislocation propagation, PNS crystalline property, PNS optical property and UVLED device performance respectively. The light out put intensity was enhanced by 1.6times@100mA for the LED grown on PNS compared to the reference LED with out PNS.

Control of Bowing in Free-standing GaN Substrate by Using Selective Etching of N-polar Face (N-polar면의 선택적 에칭 방법을 통한 Free-standing GaN 기판의 Bowing 제어)

  • Gim, Jinwon;Son, Hoki;Lim, Tea-Young;Lee, Mijai;Kim, Jin-Ho;Lee, Young Jin;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Hae-Yong;Yoon, Dae-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • In this paper, we report that selective etching on N-polar face by EC (electro-chemical)-etching effect on the reduction of bowing and strain of FS (free-standing)-GaN substrates. We applied the EC-etching to concave and convex type of FS-GaN substrates. After the EC-etching for FS-GaN, nano porous structure was formed on N-polar face of concave and convex type of FS-GaN. Consequently, the bowing in the convex type of FS-GaN substrate was decreased but the bowing in the concave type of FS-GaN substrate was increased. Furthermore, the FWHM (full width at half maximum) of (1 0 2) reflection for the convex type of FS-GaN was significantly decreased from 601 to 259 arcsec. In the case, we confirmed that the EC-etching method was very effective to reduce the bowing in the convex type of FS-GaN and the compressive stress in N-polar face of convex type of FS-GaN was fully released by Raman measurement.

A Study on the Phase Transformations of (TiAl)N Films Deposited by TFT Sputtering System (TFT(Two-Facing-Targets) 스퍼터장치에 의해 증착된 (TiAl)N 박막의 상변태에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.281-287
    • /
    • 2005
  • Titanium aluminium nitride((TiAl)N) film is anticipated as an advanced coating film with wear resistance used for drills, bites etc. and with corrosion resistance at a high temperature. In this study, (TiAl)N thin films were deposited both at room temperature and at elevated substrate temperatures of 573 to 773 K by using a two-facing-targets type DC sputtering system in a mixture Ar and $N_2$ gases. Atomic compositions of the binary Ti-Al alloy target is Al-rich (25Ti-75Al (atm%)). Process parameters such as precursor volume %, substrate temperature and Ar/$N_2$ gas ratio were optimized. The crystallization processes and phase transformations of (TiAl)N thin films were investigated by X-ray diffraction, field-emission scanning electron microscopy. The microhardness of (TiAl)N thin films were measured by a dynamic hardness tester. The films obtained with Ar/$N_2$ gas ratio of 1:3 and at 673 K substrate temperature showed the highest microhardness of $H_v$ 810. The crystallized and phase transformations of (TiAl)N thin films were $Ti_2AlN+AlN{\rightarrow}TiN+AlN$ for Ar/$N_2$ gas ratio of 1:3, $Ti_2AlN+AlN{\rightarrow}TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 1:1 and $TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN{\rightarrow}Ti_2AlN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 3:1. The above results are discussed in terms of crystallized phases and microhardness.

The Structure and Electrical Properties of Si-ZnO n-n Heterojunctions (Si-ZnO n-n 이종접합의 구조 및 전기적 특성)

  • 이춘호;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.44-50
    • /
    • 1986
  • Si-ZnO n-n heterojunction diodes were prespared by r.f diode sputtering of the sintered ZnO target on n-type Si single crystal wafers and their structures and electrical properties were studied. The films were grown orientedly with the c-axis of crystallites perpendicular to the substrate surface at low r.f. powder and grown to polycrystalline films with random orientation at high r. f. powder. The crystallite size increased with the increasing substrate temperture The oriented texture films only were used to prepare the photovoltaic diodes and these didoes showed the photovoltaic effect veing positive of the ZnO side for the photons in the wavelength range of 380-1450nm. The sign reversal of phootovoltage which is the property os isotype heterojunction was not observed because of the degeneration of the ZnO films. The diode showed the forward rectification when it was biased with the ZnO side positive. The current-voltage characteristics exhibited the thermal-current type relationship J∝exp(qV/nkT) with n=1.23 at the low forward bias voltage and the tunnelling-current type relationship J∝exp($\alpha$V) where $\alpha$ was constant independent of temperature at the high forward bias voltage. The crystallite size of ZnO films were influenced largely on the photovoltaic properties of diodes ; The diodes with the films of the larger crystallites showed the poor photovoltaic properties. This reason may be cosidered that the ZnO films with the large crystallites could not grow to the electrically continuous films because the thickness of films was so thin in this experiment.

  • PDF

The interfaces between Alq3 and ZnO substrates with various orientations

  • Lee, Jeong-Han;Lee, Yeon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.343-343
    • /
    • 2011
  • ZnO has been introduced as one of the good candidates for next generation opto-electronics. Recently, ZnO is known to be suitable for the transparent electrode in organic solar cells and light emitting devices. The contact with n-type organic material has been studied due to the n-type properties of ZnO. However, the surface of ZnO has shown different electronic property with respect to its surface orientation. Therefore, it is presumed that there are differences in the interfacial electronic structures between organic materials and ZnO with different orientation. Therefore, it is required to classify the interfacial electronic structures according to the surface orientation of ZnO. In this study, we measured the interfacial electronic structures between the ZnO substrate having various orientations and a typical n-type organic material, tris-(8-hydroxyquinoline) aluminum (Alq3). In-situ x-ray and ultraviolet photoelectron spectroscopy measurements revealed the interfacial electronic structures. We found the changes in the electronic structures with respect to the orientation of ZnO substrate and it could be used to improve the contact between ZnO and Alq3.

  • PDF

Denitrification of Anaerobic Sludge in Hybrid Type Anaerobic Reactor(II): Glucose as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(II): 기질이 글루코스인 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.196-206
    • /
    • 2000
  • Methanogenesis and denitrification in an upflow sludge baffled filter (UBF) reactor were studied using glucose as a fermentative substrate. Experiments were carried out to investigate how to reduce ammonification by changing alkalinity and $COD/NO_3-N$ ratio. Characteristics of granular sludges were examined by specifics methanogenic activity(SMA) and specific denitrification rate(SDR) tests. Microstructures of granules were examined using a scanning electron microscopy(SEM). It was found that COD was removed efficiently owing to the diverse microorganisms. In nitrate conversion, not only $COD/NO_3-N$ ratio but also influent alkalinity played important role in the ratio of denitrification and ammonification of nitrate. This reactor achieved over 95% COD and 99% nitrate removal efficiencies when influent contained 4000 mgCOD/L and $700mgNO_3-N/L$ at the hydraulic retention time of 24 hours. As $COD/NO_3-N$ ratio decreased, granular methanogenic activities using acetate and butyrate as substrates increased while activities using propionate and glucose decreased. There were three types in granules according to the surface color; gray, yellowish gray, and black. Gray or yellowish gray-colored granules were composed two layers, which were composed of black inner side and gray or yellowish gray surface substances. SEM illustrated that both were rod-type and cocci-type microorganisms resembling Methanothrix sp. and Methanococci sp. This study showed that by controlling the influent alkalinity and $COD/NO_3-N$ ratio, ammonification and denitrification could be manipulated.

  • PDF

Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2s

  • Hashemi, Adeleh;Bahari, Ali
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1546-1552
    • /
    • 2018
  • The polymer nanocomposite as a gate dielectric film was prepared via sol-gel method. The formation of crosslinked structure among nanofillers and polymer matrix was proved by Fourier transform infrared spectroscopy (FT-IR). Differential thermal analysis (DTA) results showed significant increase in the thermal stability of the nanocomposite with respect to that of pure polymer. The nanocomposite films deposited on the p- and n-type Si substrates formed very smooth surface with rms roughness of 0.045 and 0.058 nm respectively. Deconvoluted $Si_{2s}$ spectra revealed the domination of the Si-OH hydrogen bonds and Si-O-Si covalence bonds in the structure of the nanocomposite film deposited on the p- and n-type Si semiconductor layers respectively. The fabricated n-channel field-effect-transistor (FET) showed the low threshold voltage and leakage currents because of the stronger connection between the nanocomposite and n-type Si substrate. Whereas, dominated hydroxyl groups in the nanocomposite dielectric film deposited on the p-type Si substrate increased trap states in the interface, led to the drop of FET operation.

A Study of Thin Film deposition using of RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 박막 증착에 관한 연구)

  • Lee, Woo Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.772-777
    • /
    • 2018
  • This paper used RF Magnetron Sputtering to deposition n-type and p-type to ITO glass. The N-type ohmic contact worked well under all conditions. Sheet resistance has been shown to increase sheet resistance as RF Power increases. After analyzing the surface of the deposited thin film, in the condition that RF Power was 250W and substrate temperature was $250^{\circ}C$, particles were measured to have a uniform and consistent thin film. P-type has good ohmic contact under all conditions and sheet resistance has been shown to increase as RF Power increases. As the RF Power grew, thickness increased and stabilized. PN junction thin film and NP junction thin film showed increased thickness and stabilized as sputtering time increased. As a result of thin film, conversion efficiency was at 0.2 when sputtering time was 10 minutes.

Fabrication of Graphene p-n Junction Field Effect Transistors on Patterned Self-Assembled Monolayers/Substrate

  • Cho, Jumi;Jung, Daesung;Kim, Yooseok;Song, Wooseok;Adhikari, Prashanta Dhoj;An, Ki-Seok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.53-59
    • /
    • 2015
  • The field-effect transistors (FETs) with a graphene-based p-n junction channel were fabricated using the patterned self-assembled monolayers (SAMs). The self-assembled 3-aminopropyltriethoxysilane (APTES) monolayer deposited on $SiO_2$/Si substrate was patterned by hydrogen plasma using selective coating poly-methylmethacrylate (PMMA) as mask. The APTES-SAMS on the $SiO_2$ surface were patterned using selective coating of PMMA. The APTES-SAMs of the region uncovered with PMMA was removed by hydrogen plasma. The graphene synthesized by thermal chemical vapor deposition was transferred onto the patterned APTES-SAM/$SiO_2$ substrate. Both p-type and n-type graphene on the patterned SAM/$SiO_2$ substrate were fabricated. The graphene-based p-n junction was studied using Raman spectroscopy and X-ray photoelectron spectroscopy. To implement low voltage operation device, via ionic liquid ($BmimPF_6$) gate dielectric material, graphene-based p-n junction field effect transistors was fabricated, showing two significant separated Dirac points as a signature for formation of a p-n junction in the graphene channel.