Annual Conference on Human and Language Technology
/
2008.10a
/
pp.189-194
/
2008
본 논문에서는 토픽 시그너처(Topic Signature)와 n-gram을 이용한 댓글 분류 시스템을 개발한다. 토픽 시그너처는 문서요약이나 문서분류에서 자질 선택을 위한 방법으로 많이 사용되어지며, n-gram은 모든 언어에 적용 가능한 장점이 있다. 악성댓글은 대체로 문장 길이가 짧고 유행어나 변형어의 출현 빈도가 높으며 비정형화된 특징이 있다. 따라서 우리는 댓글을 n-gram으로 나누어 자질로 선택한다. 분류를 위해 베이지안(Bayesian)모델을 사용하였다. 본 논문에서는 한글과 영어 댓글에 대한 판별 실험을 통하여 구현한 시스템이 복잡한 전처리 과정이 필요한 기존에 제안된 방법들보다 더 나은 성능을 보이며, 언어에 관계없이 적용 가능하다는 것을 실험 결과를 통해 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.164-166
/
2014
음성인식 결과는 다수의 후보를 생성할 수 있다. 해당 후보들은 각각 음향모델 값과 언어모델 값을 결합한 형태의 통합 정보를 갖고 있다. 여기서 언어모델 값을 다시 계산하여 성능을 향상하는 접근 방법이 일반적인 음성인식 성능개선 방법 중 하나이며 n-gram 기반 리스코링 접근 방법이 사용되어 왔다. 본 논문은 적절한 성능 개선을 위하여, 대용량 n-gram 모델의 활용 문제점을 고려한 문장 구성 어휘의 의존 관계 분석 접근 방법 및 일정 거리 어휘쌍들의 상호정보량 값을 이용한 접근 방법을 검토한다.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.99-102
/
2002
본 논문에서는 한국어 대어휘 연속음성 인식 시스템의 성능향상을 위하여 Multi-Pass 탐색 방법을 도입하고, 그 유효성을 확인하고자 한다. 연속음성 인식실험을 위하여, 최근 실험용으로 널리 사용되고 있는 HTK와 Multi-Pass 탐색 방법을 이용한 음성인식 시스템의 비교 실험을 수행한다. 대어휘 연속음성 인식 시스템에 사용한 언어 모델은 ARPA 표준 형식의 단어 N-gram 언어모델로, 1-pass에서는 2-gram 언어모델을, 2-pass 에서는 역방향 3-gram 언어모델을 이용하여 Multi-Pass 탐색 방법으로 인식을 수행한다. 본 논문에서는 Multi-Pass 탐색 방법을 한국어 연속음성인식에 적합하게 구성한 후, 다양한 한국어 음성 데이터 베이스를 이용하여 인식실험을 수행하였다. 그 결과, 전화망을 통하여 수집된 잡음이 포함된 증권거래용 연속음성 데이터 베이스를 이용한 연속음성 인식실험에서 HTK가 $59.50\%$, Multi-Pass 탐색 방법을 이용한 시스템은 $73.31\%$의 인식성능을 나타내어 HTK를 이용한 연속음성 인식률 보다 약 $13\%$의 인식률 향상을 나타내었다.
Park, Sang-Woo;Kim, Youngtae;Kang, Dong-Min;Ra, Dongyul
Annual Conference on Human and Language Technology
/
2011.10a
/
pp.55-60
/
2011
단어 클러스터링 (word clustering) 또는 군집화는 자연어처리에서 데이터 부족 문제로 인하여 단어 간의 의미관계와 관련된 정보를 사용하기 어렵게 만드는 문제에 대처할 수 있는 중요한 기술이다. 단어 클러스터링과 관련하여 알려진 가장 대표적인 기법으로는 클래스-기반 n-gram 언어모델의 개발을 위하여 제안된 Brown 단어 클러스터링 기법이다. 그러나 Brown 클러스터링 기법을 이용하는데 있어서 부딪치는 가장 큰 문제점은 시간과 공간적인 면에서 자원 소요량이 너무 방대하다는 점이다. 본 연구는 이 클러스터링 기법의 효율성을 개선하는 실험을 수행하였다. 실험 결과 가장 단순한(naive) 접근에 비하여 약 7.9배 이상의 속도 향상을 이룰 수 있음을 관찰하였다.
Word segmentation errors occurring in text preprocessing often insert incorrect words into recognition vocabulary and cause poor language models for Korean large vocabulary continuous speech recognition. We propose an automatic word segmentation algorithm using Markov chains and syllable-based n-gram language models in order to correct word segmentation error in teat corpora. We assume that a sentence is generated from a Markov chain. Spaces and non-space characters are generated on self-transitions and other transitions of the Markov chain, respectively Then word segmentation of the sentence is obtained by finding the maximum likelihood path using syllable n-gram scores. In experimental results, the algorithm showed 91.58% word accuracy and 96.69% syllable accuracy for word segmentation of 254 sentence newspaper columns without any spaces. The algorithm improved the word accuracy from 91.00% to 96.27% for word segmentation correction at line breaks and yielded the decomposition accuracy of 96.22% for compound-noun decomposition.
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.240-245
/
2015
일반영역 음성인식은 n-gram 희소성 문제로 인해 대용량의 언어모델이 필요하다. 대용량 언어모델은 분산형 모델로 구현될 수 있고, 사용자 입력에 대한 동적 언어모델 보간 기술을 통해 음성인식 성능을 개선할 수 있다. 본 논문은 동적 언어모델 보간 기술에 대한 새로운 접근방법을 시도한다. 텍스트 군집화를 통해 주제별 언어모델을 생성한다. 여기서 주제는 사용자 입력 영역에 대응한다. 본 논문은 사용자 입력에 대하여 실시간으로 주제별 언어모델의 보간 가중치 값을 계산하는 접근 방법을 제시한다. 또한 언어모델의 보간 가중치 값 계산의 부담을 감소하기 위해 언어모델 군집화를 통해 대용량 언어모델 보간 접근 방법의 연산 부담을 해소하기 위한 시도를 한다. 주제별 언어모델에 기반하고 언어모델 군집화를 통한 동적 언어모델 보간 기술의 실험 결과 음성인식 오류 감소율 6.89%를 달성했다. 또한 언어모델 군집화 기술은 음성인식 정확도를 0.09% 저하시켰을 때 실행 시간을 17.6% 개선시키는 실험결과를 보였다.
With the increasing use of touch-enabled mobile devices such as smartphones and tablet PCs, the works are done on desktop computers and smartphones, and tablet PCs perform laptops. However, due to the nature of smart devices that require portability, QWERTY keyboard is densely arranged in a small screen. This is the cause of different typographical errors when using the mechanical QWERTY keyboard. Unlike the mechanical QWERTY keyboard, which has enough space for each button, QWERTY keyboard on the touch screen often has a small area assigned to each button, so that it is often the case that the surrounding buttons are input rather than the button the user intends to press. In this paper, we propose a method to automatically correct the input errors of the QWERTY keyboard in the touch screen environment by using the n-gram language model using the word unigram and the bigram probability.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.3
/
pp.357-362
/
2004
Language models are essential in predicting the next word in a spoken sentence, thereby enhancing the speech recognition accuracy, among other things. However, spoken language domains are too numerous, and therefore developers suffer from the lack of corpora with sufficient sizes. This paper proposes a method of combining two n-gram language models, one constructed from a very small corpus of the right domain of interest, the other constructed from a large but less adequate corpus, resulting in a significantly enhanced language model. This method is based on the observation that a small corpus from the right domain has high quality n-grams but has serious sparseness problem, while a large corpus from a different domain has more n-gram statistics but incorrectly biased. With our approach, two n-gram statistics are combined by extending the idea of Katz's backoff and therefore is called a dual-source backoff. We ran experiments with 3-gram language models constructed from newspaper corpora of several million to tens of million words together with models from smaller broadcast news corpora. The target domain was broadcast news. We obtained significant improvement (30%) by incorporating a small corpus around one thirtieth size of the newspaper corpus.
The goal of language model adaptation is to improve the background language model with a relatively small adaptation corpus. This study presents a language model adaptation technique where additional text data for the adaptation do not exist. We propose the information retrieval (IR) technique with N-gram language modeling to collect the adaptation corpus from baseline text data. We also propose to use a dynamic language model interpolation coefficient to combine the background language model and the adapted language model. The interpolation coefficient is estimated from the word hypotheses obtained by segmenting the input speech data reserved for held-out validation data. This allows the final adapted model to improve the performance of the background model consistently The proposed approach reduces the word error rate by $13.6\%$ relative to baseline 4-gram for two-hour broadcast news speech recognition.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06c
/
pp.91-94
/
1998
우리만은 영어와는 달리 단어를 공백으로만 구분할 수 없다. 그러므로 대용량 어휘를 갖는 연속 음성을 인식하기 위한 언어모델을 만들기가 매우 어렵다. N-gram의 언어 모델을 우리말 문장에 적용하기 위해 하나의 문장을 한 단어로 구성하여 처리하였다. 우리의 인식시스템을 평가하기 위하여 시스템 공학 연구소에서 제공한 음성을 대상으로 인식률을 계산하였다. 단어의 종류는 452개이며 한명이 이 단어들을 2번씩 발음하고 총70명이 발음한 총 63,280개의 단어에 대하여 92.8%의 인식률을 얻었다. 일간지 사설로부터 추출한 단어를 대상으로 발음 사전을 10K 크기로 만들었다. 음성 모델은 uniphone을 사용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.