• 제목/요약/키워드: n-gram 언어모델

검색결과 52건 처리시간 0.025초

N-gram 모델을 이용한 뇌-컴퓨터 한국어 입력기 설계 (Design of Brain-computer Korean typewriter using N-gram model)

  • 이새벽;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.143-146
    • /
    • 2010
  • 뇌-컴퓨터 인터페이스는 뇌에서 발생하는 생체신호를 통하여 컴퓨터나 외부기기를 직접 제어할 수 있는 기술이다. 자발적으로 언어를 생성하지 못하는 환자들을 위하여 뇌-컴퓨터 인터페이스를 이용하여 한국어를 자유롭게 입력할 수 있는 인터페이스에 대한 연구가 필요하다. 본 연구는 의사소통을 위한 뇌-컴퓨터 인터페이스에서 낮은 정보전달률을 개선하기 위해서 음절 n-gram과 어절 n-gram 모델을 이용하여 언어 예측 모델을 구현하였다. 또한 실제 이를 이용한 뇌 컴퓨터 한국어 입력기를 설계하였다, 이는 기존의 뇌-컴퓨터 인터페이스 연구에서 특징 추출이나 기계학습 방법의 성능향상을 위한 연구와는 차별적인 방법이다.

  • PDF

워드 임베딩과 품사 태깅을 이용한 클래스 언어모델 연구 (Class Language Model based on Word Embedding and POS Tagging)

  • 정의석;박전규
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권7호
    • /
    • pp.315-319
    • /
    • 2016
  • 음성인식 성능 개선을 위한 언어모델의 기술적 진보는 최근 심층 신경망을 기반으로 한 접근방법으로 한 단계 더 진보한 모양새다. 그러나 연구되고 있는 심층 신경망 기반 언어모델은 대부분 음성인식 이후 리스코링 단계에서 적용할 수 있는 한계를 지닌다. 또한 대규모 어휘에 대한 심층 신경망 접근방법은 아직 시간이 필요하다고 본다. 따라서 본 논문은 심층 신경망 언어 모델의 단순화된 형태인 워드 임베딩 기술을 음성인식 후처리가 아닌 기반 N-gram모델에 바로 적용할 수 있는 접근 방법을 찾는다. 클래스 언어모델이 한 접근 방법이 될 수 있는데, 본 연구에서는 워드 임베딩을 우선 구축하고, 해당 어휘별 벡터 정보를 클러스터링하여 클래스 언어모델을 구축 방법을 제시한다. 이를 기존 어휘기반 N-gram 모델에 통합한 후, 언어모델의 성능 개선 여부를 확인한다. 클래스 언어모델의 타당성 검증을 위해 다양한 클래스 개수의 언어모델 실험과 RNN LM과의 비교 결과를 검토한 후, 모든 언어모델의 성능 개선을 보장하는 품사 부착 언어모델 생성 방법을 제안한다.

음성인식을 위한 의사(疑似) N-gram 언어모델에 관한 연구 (A Study on Pseudo N-gram Language Models for Speech Recognition)

  • 오세진;황철준;김범국;정호열;정현열
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.16-23
    • /
    • 2001
  • 본 논문에서는 대어휘 음성인식에서 널리 사용되고 있는 N-gram 언어모델을 중규모 어휘의 음성인식에서도 사용할 수 있는 의사(疑似) N-gram 언어모델을 제안한다. 제안방법은 ARPA 표준형식 N-gram 언어모델의 구조를 가지면서 각 단어의 확률을 임의로 부여하는 비교적 간단한 방법으로 1-gram은 모든 단어의 출현확률을 1로 설정하고, 2-gram은 허용할 수 있는 단어시작기호 와 WORD 및 WORD와 단어종료기호 의 접속확률만을 1로 설정하며, 3-gram은 단어 시작기호 와 WORD, 단어종료기호 만의 접속을 허용하며 접속확률을 1로 설정한다. 제안방법의 유효성을 확인하기 위해 사전실험으로서 국어공학센터(KLE) 단어음성에 대해 오프라인으로 평가한 견과, 남성 3인의 452 단어에 대해 평균 97.7%의 단어인식률을 구하였다. 또한 사전실험결과를 바탕으로 1,500단어의 중규모 어휘의 증권명을 대상으로 온라인 인식실험을 수행한 결과, 남성 20명이 발성한 20단어에 대해 평균 92.5%의 단어인식률을 얻어 제안방법의 유효성을 확인하였다.

  • PDF

반복학습법에 의해 작성한 N-gram 언어모델을 이용한 연속음성인식에 관한 연구 (Continuous Speech Recognition Using N-gram Language Models Constructed by Iterative Learning)

  • 오세진;황철준;김범국;정호열;정현열
    • 한국음향학회지
    • /
    • 제19권6호
    • /
    • pp.62-70
    • /
    • 2000
  • 일반적으로 통계적 언어모델의 확률을 추정하는 방법은 대량의 텍스트 데이터로부터 출현빈도가 높은 단어를 선택하여 사용하고 있다. 하지만 특정 태스크에서 적용할 언어모델의 경우 시간적, 비용적 측면을 고려할 때 대용량의 텍스트의 사용은 비효율적일 것이다. 본 논문에서는 특정 태스크에서 사용하기 위해 소량의 텍스트 데이터로부터 효율적인 언어모델을 작성하는 방법을 제안한다. 즉, 언어모델을 작성할 때 출현빈도가 낮은 단어의 빈도를 개선하기 위해 같은 문장을 반복하여 학습에 참가시키므로 단어의 발생확률을 좀 더 강건하게 하였으며 제안된 언어모델을 이용하여 3명이 발성한 항공편 예약관련 200문장에 대하여 연속음성인식 실험을 수행하였다. 인식실험 결과, 반복학습에 의해 작성한 언어모델을 이용한 경우가 반복학습 적용 전에 비하여 평균 20.4%의 인식률 향상을 보였다. 또한 기존의 문맥자유문법을 이용한 시스템과 비교하여 인식률이 평균 13.4% 향상되어 제안한 방법이 시스템에 유효함을 확인하였다.

  • PDF

자기 조직화 n-gram모델을 이용한 자동 띄어쓰기 (Self-Organizing n-gram Model for Automatic Word Spacing)

  • 태윤식;박성배;이상조;박세영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.125-132
    • /
    • 2006
  • 한국어의 자연어처리 및 정보검색분야에서 자동 띄어쓰기는 매우 중요한 문제이다. 신문기사에서조차 잘못된 띄어쓰기를 발견할 수 있을 정도로 띄어쓰기가 어려운 경우가 많다. 본 논문에서는 자기 조직화 n-gram모델을 이용해 자동 띄어쓰기의 정확도를 높이는 방법을 제안한다. 본 논문에서 제안하는 방법은 문맥의 길이를 바꿀 수 있는 가변길이 n-gram모델을 기본으로 하여 모델이 자동으로 문맥의 길이를 결정하도록 한 것으로, 일반적인 n-gram모델에 비해 더욱 높은 성능을 얻을 수 있다. 자기조직화 n-gram모델은 최적의 문맥의 길이를 찾기 위해 문맥의 길이를 늘였을 때 나타나는 확률분포와 문맥의 길이를 늘이지 않았을 태의 확률분포를 비교하여 그 차이가 크다면 문맥의 길이를 늘이고, 그렇지 않다면 문맥의 길이를 자동으로 줄인다. 즉, 더 많은 정보가 필요한 경우는 데이터의 차원을 높여 정확도를 올리며, 이로 인해 증가된 계산량은 필요 없는 데이터의 양을 줄임으로써 줄일 수 있다. 본 논문에서는 실험을 통해 n-gram모델의 자기 조직화 구조가 기본적인 모델보다 성능이 뛰어나다는 것을 확인하였다.

  • PDF

정보검색 기법과 동적 보간 계수를 이용한 N-gram 적응 (N-gram Adaptation using Information Retrieval and Dynamic Interpolation Coefficient)

  • 최준기;오영환
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 추계 학술대회 발표논문집
    • /
    • pp.107-112
    • /
    • 2005
  • 연속음성인식을 위한 언어모델 적응기법은 특정 영역의 정보만을 담고 있는 적응 코퍼스를 이용해 작성한 적응 언어모델과 기본 언어모델을 병합하는 방법이다. 본 논문에서는 추가되는 자료 없이 인식 시스템이보유하고 있는 코퍼스만을 사용하여 적응 코퍼스를 구축하기 위해 언어모델에 기반한 정보검색 기법을 사영하였다. 검색된 적응 코퍼스로 작성된 적응 언어모델과 기본 언어모델과의 병합을 위해 본 논문에서는 입력음성을 분할하여 각 구간에 최적인 동적 보간 계수를 구하는 방법을 제안하였다. 제안된 적응 코퍼스를 구하는 방법과 동적 보간 계수는 기본 언어모델 대비절대 3.6%의 한국어 방송뉴스 인식 성능 향상을 보여주었으며 기존의 검증자료를 이용한 정적 보간 계수에 비해 상대 13.6%의 한국어 방송뉴스 인식 성능 향상을 보여 주었다.

  • PDF

의사 N-gram 언어모델을 이용한 핵심어 검출 시스템에 관한 연구 (A Study on Keyword Spotting System Using Pseudo N-gram Language Model)

  • 이여송;김주곤;정현열
    • 한국음향학회지
    • /
    • 제23권3호
    • /
    • pp.242-247
    • /
    • 2004
  • 일반적인 핵심어 검출 시스템에서는 필러모델과 핵심어모델을 연결단어 인식 네트워크로 구성하여 핵심어 검출에 사용한다. 이것은 대량의 텍스트 데이터를 이용한 대어휘 연속 음성인식에서 구해지는 단어의 출현빈도의 언어모델을 핵심어 검출 시스템에서 효과적으로 구성할 수가 없는 어려움이 있기 때문이다. 이를 해결하기 위하여 본 논문에서는 의사 N-gram 언어모델을 이용한 핵심어 검출 시스템을 제안하고 핵심어와 필러모델의 출현빈도의 변화에 따른 핵심어 검출 성능을 조사하였다. 그 결과, 핵심어와 필러모델의 출현확률을 0.2:0.8의 비율에서 CA (Correctly Accept for Keyword: 핵심어를 제대로 인정한 경우)가 91.1%, CR (Correctly Reject for OOV: 비핵심어에 대해 제대로 거절한 경우)는 91.7%로써, 일반적인 연결단어인식 네트워크를 이용한 방법보다 제안된 방법이 CA-CR 평균 인식률의 에러감소율 (Error Reduction Rate)에서 14%향상되어 핵심어 검출에서의 언어모델 도입의 효과를 확인할 수 있었다.

질문-단락 간 N-gram 주의 집중을 이용한 단락 재순위화 모델 (Passage Re-ranking Model using N-gram attention between Question and Passage)

  • 장영진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.554-558
    • /
    • 2020
  • 최근 사전학습 모델의 발달로 기계독해 시스템 성능이 크게 향상되었다. 하지만 기계독해 시스템은 주어진 단락에서 질문에 대한 정답을 찾기 때문에 단락을 직접 검색해야하는 실제 환경에서의 성능 하락은 불가피하다. 즉, 기계독해 시스템이 오픈 도메인 환경에서 높은 성능을 보이기 위해서는 높은 성능의 검색 모델이 필수적이다. 따라서 본 논문에서는 검색 모델의 성능을 보완해 줄 수 있는 오픈 도메인 기계독해를 위한 단락 재순위화 모델을 제안한다. 제안 모델은 합성곱 신경망을 이용하여 질문과 단락을 구절 단위로 표현했으며, N-gram 구절 사이의 상호 주의 집중을 통해 질문과 단락 사이의 관계를 효과적으로 표현했다. KorQuAD를 기반으로한 실험에서 제안모델은 MRR@10 기준 93.0%, Top@1 Precision 기준 89.4%의 높은 성능을 보였다.

  • PDF

단어와 클래스 기반의 한국어 언어 모델링 (Word and class-based language modeling for Korean)

  • 김길연;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.221-225
    • /
    • 2001
  • 본 논문에서는 대량의 말뭉치를 바탕으로 한국어에 대해 단어 기반의 n-gram 언어 모델과 클래스 기반의 언어 모델을 구축하고, 이를 실험적으로 검증한다. 단어 기반의 n-gram 모델링의 경우 Katz의 백오프와 Kneser-ney의 스무딩(smoothing) 알고리즘에 대해 실험을 수행한다. 클래스 기반의 언어 모델의 경우에는 품사 태그를 단어의 클래스로 사용한 경우와 말뭉치로부터 자동으로 구축된 클래스를 사용한 경우로 나누어 실험한다. 마지막으로 단어 기반 모델과 클래스 기반 모델을 결합하여 각각의 모델과 그 성능을 비교한다. 실험 결과 단어 기반의 언어 모델의 경우 Katz의 백오프에 비해 Knerser-ney의 스무딩이 보다 조은 성능을 나타내었다. 클래스 기반의 모델의 경우 품사 기반의 방범보다 자동 구축된 단어 클래스를 이용하는 방법의 성능이 더 좋았다. 또한, 단어 모델과 클래스 모델을 결합한 모델이 가장 좋은 성능을 나타냈다. 논문의 모든 알고리즘은 직접 구현되었으며 KLM Toolkit이란 이름으로 제공된다.

  • PDF

단어간 의존관계에 기반한 언어모델링 (Language Modeling based on Inter-Word Dependency Relation)

  • 이승미;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.239-246
    • /
    • 1998
  • 확률적 언어모델링은 일련의 단어열에 문장확률값을 적용하는 기법으로서 음성인식, 확률적 기계번역 등의 많은 자연언어처리 응용시스템의 중요한 한 요소이다. 기존의 접근방식으로는 크게 n-gram 기반, 문법 기반의 두가지가 있다. 일반적으로 n-gram 방식은 원거리 의존관계를 잘 표현 할 수 없으며 문법 기반 방식은 광범위한 커버리지의 문법을 습득하는데에 어려움을 가지고 있다. 본 논문에서는 일종의 단순한 의존문법을 기반으로 하는 언어모델링 기법을 제시한다. 의존문법은 단어와 단어 사이의 지배-피지배 관계로 구성되며 본 논문에서 소개되는 의존문법 재추정 알고리즘을 이용하여 원시 코퍼스로부터 자동적으로 학습된다. 실험 결과, 제시된 의존관계기반 모델이 tri-gram, bi-gram 모델보다 실험코퍼스에 대해서 약 11%에서 11.5%의 엔트로피 감소를 보임으로써 성능의 개선이 있었다.

  • PDF