For a connected graph G of order n, a set S of vertices is called a double geodetic set of G if for each pair of vertices x, y in G there exist vertices u, v ∈ S such that x, y ∈ I[u, v]. The double geodetic number dg(G) is the minimum cardinality of a double geodetic set. Any double godetic set of cardinality dg(G) is called a dg-set of G. A connected double geodetic set of G is a double geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected double geodetic set of G is the connected double geodetic number of G and is denoted by dgc(G). A connected double geodetic set of cardinality dgc(G) is called a dgc-set of G. Connected graphs of order n with connected double geodetic number 2 or n are characterized. For integers n, a and b with 2 ≤ a < b ≤ n, there exists a connected graph G of order n such that dg(G) = a and dgc(G) = b. It is shown that for positive integers r, d and k ≥ 5 with r < d ≤ 2r and k - d - 3 ≥ 0, there exists a connected graph G of radius r, diameter d and connected double geodetic number k.
A Nielsen number $\bar{N}(f:X-A)$ is a homotopy invariant lower bound for the number of fixed points on X-A where X is a compact connected polyhedron and A is a connected subpolyhedron of X. This number is extended to Nielsen type numbers $\bar{NP_{n}}(f:X-A)$ of least period n and $\bar{N{\phi}_{n}}(f:X-A)$ of the nth iterate on X-A where the subpolyhedron A of a compact connected polyhedron X is no longer path connected.
In this paper, the concept of connected geodesic number, $gn_c(G)$, of a fuzzy graph G is introduced and its limiting bounds are identified. It is proved that all extreme nodes of G and all cut-nodes of the underlying crisp graph $G^*$ belong to every connected geodesic cover of G. The connected geodesic number of complete fuzzy graphs, fuzzy cycles, fuzzy trees and of complete bipartite fuzzy graphs are obtained. It is proved that for any pair k, n of integers with $3{\leq}k{\leq}n$, there exists a connected fuzzy graph G : (V, ${\sigma}$, ${\mu}$) on n nodes such that $gn_c(G)=k$. Also, for any positive integers $2{\leq}a<b{\leq}c$, it is proved that there exists a connected fuzzy graph G : (V, ${\sigma}$, ${\mu}$) such that the geodesic number gn(G) = a and the connected geodesic number $gn_c(G)=b$.
For two integers m, n with m $\leq$ n, an [m,n]-factor F in a graph G is a spanning subgraph of G with m $\leq$ d$\_$F/(v) $\leq$ n for all v ∈ V(F). In 1996, H. Enomoto et al. proved that every 3-connected Planar graph G with d$\_$G/(v) $\geq$ 4 for all v ∈ V(G) contains a [2,3]-factor. In this paper. we extend their result to all 3-connected locally finite infinite planar graphs containing no unbounded faces.
Connected-(r,s)-out of-(m,n) : F system is an important topic in redundancy design of the complex system reliability and it's maintenance policy. Previous studies applied Monte Carlo simulation and genetic, simulated annealing algorithms to tackle the difficulty of maintenance policy problem. These algorithms suggested most suitable maintenance cycle to optimize maintenance pattern of connected-(r,s)-out of-(m,n) : F system. However, genetic algorithm is required long execution time relatively and simulated annealing has improved computational time but rather poor solutions. In this paper, we propose the ant colony optimization approach for connected-(r,s)-out of-(m,n) : F system that determines maintenance cycle and minimum unit cost. Computational results prove that ant colony optimization algorithm is superior to genetic algorithm, simulated annealing and tabu search in both execution time and quality of solution.
원 상에 n개의 점들의 쌍 (a,b)이 존재할 때, 두 점 a와 b를 연결하는 직선 선분을 코드라고 한다. 이러한 n개의 코드들은 새로운 그래프 G를 정의한다. 각 코드는 G의 한 정점을 정의하고 두 코드가 교차하는 경우에 대응되는 정점들 간에 간선을 연결한다. 이렇게 만들어진 그래프 G를 원 그래프라고 부른다. 본 논문에서는 원 그래프에서 연결 요소를 찾는 문제를 다룬다. 연결 요소란 그래프 G의 부분 그래프 H로서 H안의 임의의 두 정점 간에 경로가 존재한다는 조건을 만족하는 최대 부분 그래프이다. 그래프 G가 인접 행렬로 주어지는 경우, 연결 요소를 찾는 문제는 깊이 우선 탐색 또는 너비 우선 탐색을 통해서 해결할 수 있다. 하지만 원 그래프의 경우에 코드들을 정의하는 n개의 점들의 쌍 정보만 입력으로 주어질 때, 인접 행렬을 구하는데 ${\Omega}(n^2)$ 시간이 소요됨을 알 수 있다. 본 논문에서는 인접 행렬을 만들지 않고 원 그래프의 연결 요소를 $O(n{\log}^2n)$시간에 찾는 알고리즘을 고안한다.
The commuting graph of an arbitrary ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are all non-central elements of R, and two distinct vertices a and b are adjacent if and only if ab = ba. In this paper, we investigate the connectivity, the diameter, the maximum degree and the minimum degree of the commuting graph of group ring $Z_nQ_8$. The main result is that $\Gamma(Z_nQ_8)$ is connected if and only if n is not a prime. If $\Gamma(Z_nQ_8)$ is connected, then diam($Z_nQ_8$)= 3, while $\Gamma(Z_nQ_8)$ is disconnected then every connected component of $\Gamma(Z_nQ_8)$ must be a complete graph with a same size. Further, we obtain the degree of every vertex in $\Gamma(Z_nQ_8)$, the maximum degree and the minimum degree of $\Gamma(Z_nQ_8)$.
This study considers a linear connected-(r,s)-out-of-(m,n):F lattice system whose components are ordered like the elements of a linear (m,n )-matrix. We assume that all components are in the state 1 (operating) or 0 (failed) and identical and s-independent. The system fails whenever at least one connected (r,s)-submatrix of failed components occurs. The purpose of this paper is to present an optimization scheme that aims at minimizing the expected cost per unit time. To find the optimal threshold of maintenance intervention, we use a genetic algorithm for the cost optimization procedure. The expected cost per unit time is obtained by Monte Carlo simulation. The sensitivity analysis to the different cost parameters has also been made.
International Journal of Reliability and Applications
/
제14권2호
/
pp.71-78
/
2013
The problem of designing an experiment to estimate the reliability of a system that has N subsystems connected in series where each subsystem n has n $T_n$ components connected in parallel is investigated both theoretically and by simulation. An accelerated sampling sheme is introduced. It is shown that the accelerated sampling scheme is asymptotically optimal as the total number of units goes to infinity. Numerical comparisons for a system that has two subsystems connected in series where each subsystem has two components connected in parallel are also given. They indicate that the accelerated sampling scheme performs better than the batch sequential sampling scheme and is nearly optimal.
Zhu, Yanmin;Xue, Cuiyao;Cai, Haibin;Yu, Jiadi;Ni, Lei;Li, Minglu;Li, Bo
Journal of Communications and Networks
/
제16권3호
/
pp.335-343
/
2014
This paper considers the crucial problem of deploying wireless relays for achieving a connected wireless sensor network in indoor environments, an important aspect related to the management of the sensor network. Several algorithms have been proposed for ensuring full sensing coverage and network connectivity. These algorithms are not applicable to indoor environments because of the complexity of indoor environments, in which a radio signal can be dramatically degraded by obstacles such as walls. We first prove theoretically that the indoor relay placement problem is NP-hard. We then predict the radio coverage of a given relay deployment in indoor environments. We consider two practical scenarios; wire-connected relays and radio-connected relays. For the network with wire-connected relays, we propose an efficient greedy algorithm to compute the deployment locations of relays for achieving the required coverage percentage. This algorithm is proved to provide a $H_n$ factor approximation to the theoretical optimum, where $H_n=1+{\frac{1}{2}}+{\cdots}+{\frac{1}{n}}={\ln}(n)+1$, and n is the number of all grid points. In the network with radio-connected relays, relays have to be connected in an ad hoc mode. We then propose an algorithm based on the previous algorithm for ensuring the connectivity of relays. Experimental results demonstrate that the proposed algorithms achieve better performance than baseline algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.