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THE CONNECTED DOUBLE GEODETIC NUMBER OF A
GRAPH

A.P. SANTHAKUMARAN∗ AND T. JEBARAJ

Abstract. For a connected graph G of order n, a set S of vertices is called
a double geodetic set of G if for each pair of vertices x, y in G there exist
vertices u, v ∈ S such that x, y ∈ I[u, v]. The double geodetic number dg(G)
is the minimum cardinality of a double geodetic set. Any double godetic set
of cardinality dg(G) is called a dg-set of G. A connected double geodetic set
of G is a double geodetic set S such that the subgraph G[S] induced by S is
connected. The minimum cardinality of a connected double geodetic set of
G is the connected double geodetic number of G and is denoted by dgc(G).
A connected double geodetic set of cardinality dgc(G) is called a dgc-set of
G. Connected graphs of order n with connected double geodetic number 2

or n are characterized. For integers n, a and b with 2 ≤ a < b ≤ n, there
exists a connected graph G of order n such that dg(G) = a and dgc(G) = b.
It is shown that for positive integers r, d and k ≥ 5 with r < d ≤ 2r and
k−d− 3 ≥ 0, there exists a connected graph G of radius r, diameter d and
connected double geodetic number k.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by n and m
respectively. For basic graph theoretic terminology we refer to [4]. For vertices
x and y in a connected graph G, the distance d(x, y) is the length of a shortest
x-y path in G. It is known that the distance is a metric on the vertex set of G.
An x-y path of length d(x, y) is called an x-y geodesic. A vertex v is said to lie
on an x-y geodesic P if v is a vertex of P including the vertices x and y. For any
vertex u of G, the eccentricity of u is e(u) = max{d(u, v) : v ∈ V }. A vertex v is
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an eccentric vertex of u if e(u) = d(u, v). The radius rad G and diameter diam G
are defined by rad G = min{e(v) : v ∈ V } and diam G = max{e(v) : v ∈ V }
respectively. The neighborhood of a vertex v is the set N(v) consisting of all
vertices u which are adjacent with v. A vertex v is an extreme vertex of G if
the subgraph induced N(v) is complete. A vertex v is a weak extreme vertex of
G if there exists a vertex u in G such that u, v ∈ I[x, y] for a pair of vertices
x, y in G, then v = x or v = y. Equivalently, a vertex v in a connected graph
is a weak extreme vertex if there exists a vertex u in G such that v is either
an initial vertex or a terminal vertex of any interval containing both u and v.
Each extreme vertex of a graph is weak extreme. For the graph G in Figure 1,
it is clear that the pair v2, v5 lies only on the v2 − v5 geodesic and so v2 and v5
are weak extreme vertices of G. Similarly, the vertices v4 and v6 are also weak
extreme vertices of G. It is easily seen that v1 and v3 are also weak extreme
vertices of G.

b b b b

b

b

v2

v1 v5 v4 v3

v6
Figure 1 : G

The closed interval I[x, y] consists of all vertices lying on some x-y geodesic of
G, while for S ⊆ V, I[S] =

∪
x,y∈S

I[x, y]. A set S of vertices is a geodetic set of G if

I[S] = V, and the minimum cardinality of a geodetic set is the geodetic number
g(G). A geodetic set of cardinality g(G) is called a g-set of G. A connected
geodetic set S of G is a geodetic set such that the subgraph G[S] induced by S
is connected. The minimum cardinality of a connected geodetic set of G is the
connected geodetic number of G and is denoted by gc(G). A connected geodetic
set of cardinality gc(G) is called a gc-set of G. The geodetic number of a graph
was introduced in [1, 5] and further studied in [2, 3, 6]. It was shown in [5] that
determining the geodetic number of a graph is an NP-hard problem. Let 2V

denote the set of all subsets of V . The mapping I : V × V → 2V defined by
I[u, v] = {w ∈ V : w lies on a u − v geodesic in G} is the interval function of
G. One of the basic properties of I is that u, v ∈ I[u, v] for any pair u, v ∈ V .
Hence the interval function captures every pair of vertices and so the problem
of double geodetic sets is trivially well-defined while it is clear that this fails in
many graphs already for triplets (for example, complete graphs). This motivated
us to introduce and study double geodetic sets.

A set S of vertices in G is called a double geodetic set of G if for each pair
of vertices x, y there exist vertices u, v ∈ S such that x, y ∈ I[u, v]. The double
geodetic number dg(G) is the minimum cardinality of a double geodetic set. Any
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double geodetic of cardinality dg(G) is called dg-set of G. The double geodetic
number of graph was introduced and studied in [8]. The following theorems will
be used in the sequel.

Theorem 1.1. [8] Every double geodetic set of a connected graph G contains
all the weak extreme vertices of G. In particular, if the set W of all weak extreme
vertices is a double geodetic set, then W is the unique dg-set of G.

Theorem 1.2. [8] Let G be a connected graph with a cut-vertex v. Then each
double geodetic set of G contains at least one vertex from each component of
G− v.

2. The connected double geodetic number of a graph

Definition 2.1. Let G be a connected graph with at least two vertices. A
connected double geodetic set of G is a double geodetic set S such that the subgraph
G[S] induced by S is connected. The minimum cardinality of a connected double
geodetic set of G is the connected double geodetic number of G and is denoted by
dgc(G).

Example 2.1. For the graph G given in Figure 2.1, S = {v1, v4, v5, v6} is
a minimum double geodetic set of G so that dg(G) = 4. Since the subgraph
induced by S is not connected, S is not a connected double geodetic set of G. It
is clear that T = {v1, v2, v3, v4, v5, v6} is a minimum connected double geodetic
set of G and so dgc(G) = 6.
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v6 v7

Figure 2.1: G

Theorem 2.1. Each weak extreme vertex of a connected graph G belongs to
every connected double geodetic set of G. In particular, every end-vertex of G
belongs to every connected double geodetic set of G.

Proof. Since every connected double geodetic set is also a double geodetic set,
the result follows from Theorem 1.1. �

Corollary 2.1. For the complete graph Kn (n ≥ 2), dgc(Kn) = n.

Theorem 2.2. Let G be a connected graph with a cut-vertex v. Then each con-
nected double geodetic set of G contains at least one vertex from each component
of G− v.
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Proof. This follows from Theorem 1.2. �

Theorem 2.3. Each cut-vertex of a connected graph G belongs to every con-
nected double geodetic set of G.

Proof. Let v be any cut-vertex of G and let G1, G2, . . . , Gr (r ≥ 2) be the
components of G−{v}. Let S be any connected double geodetic set of G. Then
by Theorem 2.2, S contains at least one element from each Gi(1 ≤ i ≤ r). Since
G[S] is connected, it follows that v ∈ S. �

Corollary 2.2. For a connected graph G with k weak extreme vertices and l
cut-vertices, dgc(G) ≥ max {2, k + l}.

Proof. This follows from Theorems 2.1 and 2.3. �

Corollary 2.3. For any non-trivial tree T of order n, dgc(T ) = n.

Proof. This follows from Corollary 2.2. �

Theorem 2.4. For a connected graph G of order n, 2 ≤ dg(G) ≤ dgc(G) ≤ n.

Proof. Any double geodetic set needs at least two vertices and so dg(G) ≥ 2.
Since every connected double geodetic set is also a double geodetic set, it follows
that dg(G) ≤ dgc(G). Also, since V (G) induces a connected double geodetic set
of G, it is clear that dgc(G) ≤ n. �

Remark 2.1. The bounds in Theorem 2.4 are sharp. For any non-trivial path
P , dg(P ) = 2. For the complete graph Kn, dg(Kn) = dgc(Kn). By Corollary
2.3, dgc(T ) = n for any non-trivial tree T of order n. Also, all the inequalities in
Theorem 2.4 are strict. For the graph G given Figure 2.1, dg(G) = 4, dgc(G) = 6
and n = 7 so that 2 < dg(G) < dgc(G) < n.

Corollary 2.4. Let G be a connected graph. If dgc(G) = 2, then dg(G) = 2.

Proof. This follows from Theorem 2.4. �

Theorem 2.5. Let G be a connected graph of order n ≥ 2. Then dgc(G) = 2 if
and only if G = K2.

Proof. If G = K2, then dgc(G) = 2. Conversely, let dgc(G) = 2. Let S = {u, v}
be a minimum connected double geodetic set of G. Then uv is an edge. If
G ̸= K2, then there exists a vertex w different from u and v, and w does not lie
on any u-v geodesic so that S is not a dgc-set, which is a contradiction. Thus
G = K2. �

Theorem 2.6. Let G be a connected graph of order n. Then dgc(G) = n if and
only if every vertex of G is either a cut-vertex or a weak extreme vertex.

Proof. Let G be a connected graph with every vertex of G either a cut-vertex
or weak extreme vertex. Then the result follows from Theorems 2.1 and 2.3.
Conversely, let G be a connected graph of order n with dgc(G) = n. Suppose
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that there exists a vertex v which is neither a weak extreme vertex nor a cut-
vertex of G. We show that S = V −{v} is a connected double geodetic set of G.
Since v is not a cut-vertex of G, the subgraph induced by S is connected. Let
u ̸= v be any vertex of G. Since v is not a weak extreme vertex of G, we have
u, v ∈ I[x, y] for a pair of vertices x, y ∈ G with v ̸= x and v ̸= y. This shows
that S is a double geodetic set of G. Thus S is a connected double geodetic set
of G and so dgc(G) ≤ n− 1, which is a contradiction. Hence every vertex of G
is either a cut-vertex or a weak extreme vertex. �

Theorem 2.7. If n, a, and b are integers such that 2 ≤ a < b ≤ n, then there
exists a connected graph G of order n such that dg(G) = a and dgc(G) = b.

Proof. The theorem is proved by considering three cases.
Case 1. 2 ≤ a < b = n. Let G be any tree of order b with number of end-vertices
equal to a. Then by Theorem 1.1, dg(G) = a and by Corollary 2.3, dgc(G) = n.
Case 2. 2 = a < b < n. Let Pb : u1, u2, . . . , ub be a path on b vertices. Add
(n − b) new vertices w1, w2, . . . , wn−b to Pb and join w1, w2, . . . , wn−b to both
u1 and u3, thereby producing the graph G of Figure 2.2. Then G has order n
and S = {u1, ub} is the unique minimum double geodetic set of G and so by
Theorem 1.1 dg(G) = 2 = a. Also, S1 = {u1, u3, u4, . . . , ub} is the set of all
cut-vertices and weak extreme vertices of G. By Theorems 2.1 and 2.3, every
connected double geodetic set contains S1. It is clear that S1 is not a connected
double geodetic set of G. Since S1 ∪ {u2} is a connected double geodetic set of
G, it follows that dgc(G) = b.
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Figure 2.2: G

Case 3. 3 ≤ a < b < n. First assume that b ̸= a + 1. Let Pb−a+2 :
u1, u2, . . . , ub−a+2 be a path on b − a + 2 vertices. Add a − 2 + n − b new
vertices v1, w1, w2, . . . , wa−3, x1, x2, . . . , xn−b to Pb−a+2 and join v1 to u2, and
join w1, w2, . . . , wa−3 to both u1 and u3, and join x1, x2, . . . , xn−b to both u2
and u4 thereby producing the graph G Figure 2.3. Then G has order n and
S = {v1, u1, w1, w2, . . . , wa−3, ub−a+2} is the unique minimum double geodetic
set of G and so by Theorem 1.1 dg(G) = a. Also S1 = {u2, u4, u5, . . . , ub−a+2,
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v1, u1, w1, w2, . . . , wa−3} is the set of all cut-vertices and weak extreme vertices
of G. By Theorems 2.1 and 2.3, every connected double geodetic set contains S1.
It is clear that S1 is not a connected double geodetic set of G. Since S1 ∪ {u3}
is a connected double geodetic set of G, we have dgc(G) = b.
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Figure 2.3: G

Next, assume that b = a+ 1. Let V (Kn−a) = {u1, u2, . . . , un−a} and V (Ka)
= {v1, v2, . . . , va}. Let G = Ka + Kn−a. Then G has order n and S =
{v1, v2, . . . , va} is the unique minimum double geodetic set of G and so by
Theorem 1.1 dg(G) = a. By Theorem 2.1, every connected double geodetic
set contains S. It is clear that S is not a connected double geodetic set of
G. Since S ∪ {u1} is a connected double geodetic set of G, it follows that
dgc(G) = a+ 1 = b. �

For every connected graph G, rad G ≤ diam G ≤ 2 rad G. Ostrand [7]
showed that every two positive integers a and b with a ≤ b ≤ 2a are realizable as
the radius and diameter respectively, of some connected graph. Now, Ostrand’s
theorem can be extended so that the connected double geodetic number can also
be prescribed.
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Figure 2.4: G
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Theorem 2.8. For positive integers r, d and k ≥ 4 with r ≤ d ≤ 2r and
k− d− 1 ≥ 0, there exists a connected graph G with rad G = r, diam G = d and
dgc(G) = k.

Proof. If r = 1, then d = 1 or 2. For d = 1, let G = Kk. Then dgc(G) = k.
For d = 2, construct a graph G as follows: Let P3 : u1, u2, u3 be a path of
order 3. Add a new vertex v1 to P3 and join to the vertex u2 and obtain the
graph H. Also, add (k − 4) new vertices w1, w2, . . . , wk−5 to H and join each
wi(1 ≤ i ≤ k − 4) to u1, u2 and u3 and obtain the graph G in Figure 2.4. Then
rad G = 1 and diam G = 2. It is clear that v1, u1, u3, w1, w2, . . . , wk−4 are
the weak extreme vertices of G and u2 is the only cut-vertex of G. Hence by
Theorem 2.6, dgc(G) = k.
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Figure 2.5: G
Now, let r ≥ 2.
Case 1. r = d. Let C2r : u1, u2, . . . , u2r, u1 be a cycle of order 2r. Let G be the
graph given in Figure 2.5, obtained by adding the new vertices v1, v2, . . . , vk−r−1

and joining each vi(i ≤ i ≤ k− r− 1) with u1 and u2r of C2r. It is easily verfied
that the eccentricity of each vertex of G is r so that rad G = diam G = r.
Let S = {v1, v2, . . . , vk−r−1, ur, ur+1, u1} be the set of all weak extreme vertices
of G. By Theorem 2.1, every connected double geodetic set of G contains S.
It is clear that S is not a connected double geodetic set of G. Since S1 =
S ∪ {u2, u3 . . . ur−1} is a connected double geodetic set of G, it follows that
dgc(G) = k.
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Case 2. r < d. Let C2r : u1, u2, . . . , u2r, u1 be a cycle of order 2r and let
Pd−r+1 : v0, v1, . . . , vd−r be a path of order d − r + 1. Let H be the graph
obtained from C2r and Pd−r+1 by identifying v0 of Pd−r+1 and u1 of C2r. Now,
add k − 6 new vertices w1, w2, . . . , wk−6 to the graph H and join w1 to ur,
and join each vertex wi(2 ≤ i ≤ k − d − 2) to both ur+1 and ur−1, thereby
obtaining the graph G in Figure 2.6. Then rad G = r and diam G = d. Now,
S1 = {w1, w2, . . . , wk−d−2, ur+1, u2r, vd−r} is the set of all weak extreme vertices
of G and S2 = {ur, u1, v1, v2, . . . , vd−r−1} is the set of all cut-vertices of G. By
Theorems 2.1 and 2.3, every connected double geodetic set contains S1 ∪ S2.
Although S1 ∪ S2 is a double geodetic set, it is not a connected double geodetic
set of G. It is clear that T = S1∪S2∪{u2, u3, . . . , ur−1} is a minimum connected
double geodetic set of G and so dgc(G) = k. �
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