THE CONNECTED DOUBLE GEODETIC NUMBER OF A GRAPH

A.P. SANTHAKUMARAN* AND T. JEBARAJ

Abstract

For a connected graph G of order n, a set S of vertices is called a double geodetic set of G if for each pair of vertices x, y in G there exist vertices $u, v \in S$ such that $x, y \in I[u, v]$. The double geodetic number $d g(G)$ is the minimum cardinality of a double geodetic set. Any double godetic set of cardinality $d g(G)$ is called a $d g$-set of G. A connected double geodetic set of G is a double geodetic set S such that the subgraph $G[S]$ induced by S is connected. The minimum cardinality of a connected double geodetic set of G is the connected double geodetic number of G and is denoted by $d g_{c}(G)$. A connected double geodetic set of cardinality $d g_{c}(G)$ is called a $d g_{c}$-set of G. Connected graphs of order n with connected double geodetic number 2 or n are characterized. For integers n, a and b with $2 \leq a<b \leq n$, there exists a connected graph G of order n such that $d g(G)=a$ and $d g_{c}(G)=b$. It is shown that for positive integers r, d and $k \geq 5$ with $r<d \leq 2 r$ and $k-d-3 \geq 0$, there exists a connected graph G of radius r, diameter d and connected double geodetic number k.

AMS Mathematics Subject Classification : 05C12.
Key words and phrases : Geodesic, geodetic number, double geodetic number, connected double geodetic number.

1. Introduction

By a graph $G=(V, E)$ we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology we refer to [4]. For vertices x and y in a connected graph G, the distance $d(x, y)$ is the length of a shortest $x-y$ path in G. It is known that the distance is a metric on the vertex set of G. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. A vertex v is said to lie on an $x-y$ geodesic P if v is a vertex of P including the vertices x and y. For any vertex u of G, the eccentricity of u is $e(u)=\max \{d(u, v): v \in V\}$. A vertex v is

[^0]an eccentric vertex of u if $e(u)=d(u, v)$. The radius $\operatorname{rad} G$ and diameter $\operatorname{diam} G$ are defined by $\operatorname{rad} G=\min \{e(v): v \in V\}$ and $\operatorname{diam} G=\max \{e(v): v \in V\}$ respectively. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced $N(v)$ is complete. A vertex v is a weak extreme vertex of G if there exists a vertex u in G such that $u, v \in I[x, y]$ for a pair of vertices x, y in G, then $v=x$ or $v=y$. Equivalently, a vertex v in a connected graph is a weak extreme vertex if there exists a vertex u in G such that v is either an initial vertex or a terminal vertex of any interval containing both u and v. Each extreme vertex of a graph is weak extreme. For the graph G in Figure 1, it is clear that the pair v_{2}, v_{5} lies only on the $v_{2}-v_{5}$ geodesic and so v_{2} and v_{5} are weak extreme vertices of G. Similarly, the vertices v_{4} and v_{6} are also weak extreme vertices of G. It is easily seen that v_{1} and v_{3} are also weak extreme vertices of G.

Figure 1: G
The closed interval $I[x, y]$ consists of all vertices lying on some $x-y$ geodesic of G, while for $S \subseteq V, I[S]=\bigcup_{x, y \in S} I[x, y]$. A set S of vertices is a geodetic set of G if $I[S]=V$, and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. A geodetic set of cardinality $g(G)$ is called a g-set of G. A connected geodetic set S of G is a geodetic set such that the subgraph $G[S]$ induced by S is connected. The minimum cardinality of a connected geodetic set of G is the connected geodetic number of G and is denoted by $g_{c}(G)$. A connected geodetic set of cardinality $g_{c}(G)$ is called a g_{c}-set of G. The geodetic number of a graph was introduced in $[1,5]$ and further studied in $[2,3,6]$. It was shown in [5] that determining the geodetic number of a graph is an NP-hard problem. Let 2^{V} denote the set of all subsets of V. The mapping $I: V \times V \rightarrow 2^{V}$ defined by $I[u, v]=\{w \in V: w$ lies on a $u-v$ geodesic in $G\}$ is the interval function of G. One of the basic properties of I is that $u, v \in I[u, v]$ for any pair $u, v \in V$. Hence the interval function captures every pair of vertices and so the problem of double geodetic sets is trivially well-defined while it is clear that this fails in many graphs already for triplets (for example, complete graphs). This motivated us to introduce and study double geodetic sets.

A set S of vertices in G is called a double geodetic set of G if for each pair of vertices x, y there exist vertices $u, v \in S$ such that $x, y \in I[u, v]$. The double geodetic number $d g(G)$ is the minimum cardinality of a double geodetic set. Any
double geodetic of cardinality $d g(G)$ is called $d g$-set of G. The double geodetic number of graph was introduced and studied in [8]. The following theorems will be used in the sequel.

Theorem 1.1. [8] Every double geodetic set of a connected graph G contains all the weak extreme vertices of G. In particular, if the set W of all weak extreme vertices is a double geodetic set, then W is the unique dg-set of G.

Theorem 1.2. [8] Let G be a connected graph with a cut-vertex v. Then each double geodetic set of G contains at least one vertex from each component of $G-v$.

2. The connected double geodetic number of a graph

Definition 2.1. Let G be a connected graph with at least two vertices. A connected double geodetic set of G is a double geodetic set S such that the subgraph $G[S]$ induced by S is connected. The minimum cardinality of a connected double geodetic set of G is the connected double geodetic number of G and is denoted by $d g_{c}(G)$.
Example 2.1. For the graph G given in Figure 2.1, $S=\left\{v_{1}, v_{4}, v_{5}, v_{6}\right\}$ is a minimum double geodetic set of G so that $d g(G)=4$. Since the subgraph induced by S is not connected, S is not a connected double geodetic set of G. It is clear that $T=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is a minimum connected double geodetic set of G and so $d g_{c}(G)=6$.

Figure 2.1: G
Theorem 2.1. Each weak extreme vertex of a connected graph G belongs to every connected double geodetic set of G. In particular, every end-vertex of G belongs to every connected double geodetic set of G.

Proof. Since every connected double geodetic set is also a double geodetic set, the result follows from Theorem 1.1.

Corollary 2.1. For the complete graph $K_{n}(n \geq 2), d g_{c}\left(K_{n}\right)=n$.
Theorem 2.2. Let G be a connected graph with a cut-vertex v. Then each connected double geodetic set of G contains at least one vertex from each component of $G-v$.

Proof. This follows from Theorem 1.2.
Theorem 2.3. Each cut-vertex of a connected graph G belongs to every connected double geodetic set of G.

Proof. Let v be any cut-vertex of G and let $G_{1}, G_{2}, \ldots, G_{r}(r \geq 2)$ be the components of $G-\{v\}$. Let S be any connected double geodetic set of G. Then by Theorem 2.2, S contains at least one element from each $G_{i}(1 \leq i \leq r)$. Since $G[S]$ is connected, it follows that $v \in S$.

Corollary 2.2. For a connected graph G with k weak extreme vertices and l cut-vertices, $d g_{c}(G) \geq \max \{2, k+l\}$.

Proof. This follows from Theorems 2.1 and 2.3.
Corollary 2.3. For any non-trivial tree T of order $n, d g_{c}(T)=n$.
Proof. This follows from Corollary 2.2.
Theorem 2.4. For a connected graph G of order $n, 2 \leq d g(G) \leq d g_{c}(G) \leq n$.
Proof. Any double geodetic set needs at least two vertices and so $d g(G) \geq 2$. Since every connected double geodetic set is also a double geodetic set, it follows that $d g(G) \leq d g_{c}(G)$. Also, since $V(G)$ induces a connected double geodetic set of G, it is clear that $d g_{c}(G) \leq n$.

Remark 2.1. The bounds in Theorem 2.4 are sharp. For any non-trivial path $P, d g(P)=2$. For the complete graph $K_{n}, d g\left(K_{n}\right)=d g_{c}\left(K_{n}\right)$. By Corollary 2.3, $d g_{c}(T)=n$ for any non-trivial tree T of order n. Also, all the inequalities in Theorem 2.4 are strict. For the graph G given Figure 2.1, $d g(G)=4, d g_{c}(G)=6$ and $n=7$ so that $2<d g(G)<d g_{c}(G)<n$.

Corollary 2.4. Let G be a connected graph. If $d g_{c}(G)=2$, then $d g(G)=2$.
Proof. This follows from Theorem 2.4.
Theorem 2.5. Let G be a connected graph of order $n \geq 2$. Then $d g_{c}(G)=2$ if and only if $G=K_{2}$.

Proof. If $G=K_{2}$, then $d g_{c}(G)=2$. Conversely, let $d g_{c}(G)=2$. Let $S=\{u, v\}$ be a minimum connected double geodetic set of G. Then $u v$ is an edge. If $G \neq K_{2}$, then there exists a vertex w different from u and v, and w does not lie on any u-v geodesic so that S is not a $d g_{c}$-set, which is a contradiction. Thus $G=K_{2}$.

Theorem 2.6. Let G be a connected graph of order n. Then $d g_{c}(G)=n$ if and only if every vertex of G is either a cut-vertex or a weak extreme vertex.

Proof. Let G be a connected graph with every vertex of G either a cut-vertex or weak extreme vertex. Then the result follows from Theorems 2.1 and 2.3. Conversely, let G be a connected graph of order n with $d g_{c}(G)=n$. Suppose
that there exists a vertex v which is neither a weak extreme vertex nor a cutvertex of G. We show that $S=V-\{v\}$ is a connected double geodetic set of G. Since v is not a cut-vertex of G, the subgraph induced by S is connected. Let $u \neq v$ be any vertex of G. Since v is not a weak extreme vertex of G, we have $u, v \in I[x, y]$ for a pair of vertices $x, y \in G$ with $v \neq x$ and $v \neq y$. This shows that S is a double geodetic set of G. Thus S is a connected double geodetic set of G and so $d g_{c}(G) \leq n-1$, which is a contradiction. Hence every vertex of G is either a cut-vertex or a weak extreme vertex.

Theorem 2.7. If n, a, and b are integers such that $2 \leq a<b \leq n$, then there exists a connected graph G of order n such that $d g(G)=a$ and $d g_{c}(G)=b$.
Proof. The theorem is proved by considering three cases.
Case 1. $2 \leq a<b=n$. Let G be any tree of order b with number of end-vertices equal to a. Then by Theorem 1.1, $d g(G)=a$ and by Corollary 2.3, $d g_{c}(G)=n$. Case 2. $2=a<b<n$. Let $P_{b}: u_{1}, u_{2}, \ldots, u_{b}$ be a path on b vertices. Add $(n-b)$ new vertices $w_{1}, w_{2}, \ldots, w_{n-b}$ to P_{b} and join $w_{1}, w_{2}, \ldots, w_{n-b}$ to both u_{1} and u_{3}, thereby producing the graph G of Figure 2.2. Then G has order n and $S=\left\{u_{1}, u_{b}\right\}$ is the unique minimum double geodetic set of G and so by Theorem $1.1 \mathrm{dg}(G)=2=a$. Also, $S_{1}=\left\{u_{1}, u_{3}, u_{4}, \ldots, u_{b}\right\}$ is the set of all cut-vertices and weak extreme vertices of G. By Theorems 2.1 and 2.3, every connected double geodetic set contains S_{1}. It is clear that S_{1} is not a connected double geodetic set of G. Since $S_{1} \cup\left\{u_{2}\right\}$ is a connected double geodetic set of G, it follows that $d g_{c}(G)=b$.

Figure 2.2: G
Case 3. $3 \leq a<b<n$. First assume that $b \neq a+1$. Let P_{b-a+2} : $u_{1}, u_{2}, \ldots, u_{b-a+2}$ be a path on $b-a+2$ vertices. Add $a-2+n-b$ new vertices $v_{1}, w_{1}, w_{2}, \ldots, w_{a-3}, x_{1}, x_{2}, \ldots, x_{n-b}$ to P_{b-a+2} and join v_{1} to u_{2}, and join $w_{1}, w_{2}, \ldots, w_{a-3}$ to both u_{1} and u_{3}, and join $x_{1}, x_{2}, \ldots, x_{n-b}$ to both u_{2} and u_{4} thereby producing the graph G Figure 2.3. Then G has order n and $S=\left\{v_{1}, u_{1}, w_{1}, w_{2}, \ldots, w_{a-3}, u_{b-a+2}\right\}$ is the unique minimum double geodetic set of G and so by Theorem $1.1 d g(G)=a$. Also $S_{1}=\left\{u_{2}, u_{4}, u_{5}, \ldots, u_{b-a+2}\right.$,
$\left.v_{1}, u_{1}, w_{1}, w_{2}, \ldots, w_{a-3}\right\}$ is the set of all cut-vertices and weak extreme vertices of G. By Theorems 2.1 and 2.3, every connected double geodetic set contains S_{1}. It is clear that S_{1} is not a connected double geodetic set of G. Since $S_{1} \cup\left\{u_{3}\right\}$ is a connected double geodetic set of G, we have $d g_{c}(G)=b$.

Figure 2.3: G
Next, assume that $b=a+1$. Let $V\left(K_{n-a}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n-a}\right\}$ and $V\left(K_{a}\right)$ $=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$. Let $G=\overline{K_{a}}+K_{n-a}$. Then G has order n and $S=$ $\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ is the unique minimum double geodetic set of G and so by Theorem $1.1 d g(G)=a$. By Theorem 2.1, every connected double geodetic set contains S. It is clear that S is not a connected double geodetic set of G. Since $S \cup\left\{u_{1}\right\}$ is a connected double geodetic set of G, it follows that $d g_{c}(G)=a+1=b$.

For every connected graph G, rad $G \leq \operatorname{diam} G \leq 2$ rad G. Ostrand [7] showed that every two positive integers a and b with $a \leq b \leq 2 a$ are realizable as the radius and diameter respectively, of some connected graph. Now, Ostrand's theorem can be extended so that the connected double geodetic number can also be prescribed.

Figure 2.4: G

Theorem 2.8. For positive integers r, d and $k \geq 4$ with $r \leq d \leq 2 r$ and $k-d-1 \geq 0$, there exists a connected graph G with $\operatorname{rad} G=r$, $\operatorname{diam} G=d$ and $d g_{c}(G)=k$.

Proof. If $r=1$, then $d=1$ or 2 . For $d=1$, let $G=K_{k}$. Then $d g_{c}(G)=k$. For $d=2$, construct a graph G as follows: Let $P_{3}: u_{1}, u_{2}, u_{3}$ be a path of order 3. Add a new vertex v_{1} to P_{3} and join to the vertex u_{2} and obtain the graph H. Also, add $(k-4)$ new vertices $w_{1}, w_{2}, \ldots, w_{k-5}$ to H and join each $w_{i}(1 \leq i \leq k-4)$ to u_{1}, u_{2} and u_{3} and obtain the graph G in Figure 2.4. Then $\operatorname{rad} G=1$ and $\operatorname{diam} G=2$. It is clear that $v_{1}, u_{1}, u_{3}, w_{1}, w_{2}, \ldots, w_{k-4}$ are the weak extreme vertices of G and u_{2} is the only cut-vertex of G. Hence by Theorem 2.6, $d g_{c}(G)=k$.

Figure 2.5: G
Now, let $r \geq 2$.
Case 1. $r=d$. Let $C_{2 r}: u_{1}, u_{2}, \ldots, u_{2 r}, u_{1}$ be a cycle of order $2 r$. Let G be the graph given in Figure 2.5, obtained by adding the new vertices $v_{1}, v_{2}, \ldots, v_{k-r-1}$ and joining each $v_{i}(i \leq i \leq k-r-1)$ with u_{1} and $u_{2 r}$ of $C_{2 r}$. It is easily verfied that the eccentricity of each vertex of G is r so that $\operatorname{rad} G=\operatorname{diam} G=r$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k-r-1}, u_{r}, u_{r+1}, u_{1}\right\}$ be the set of all weak extreme vertices of G. By Theorem 2.1, every connected double geodetic set of G contains S. It is clear that S is not a connected double geodetic set of G. Since $S_{1}=$ $S \cup\left\{u_{2}, u_{3} \ldots u_{r-1}\right\}$ is a connected double geodetic set of G, it follows that $d g_{c}(G)=k$.

Figure 2.6: G

Case 2. $r<d$. Let $C_{2 r}: u_{1}, u_{2}, \ldots, u_{2 r}, u_{1}$ be a cycle of order $2 r$ and let $P_{d-r+1}: v_{0}, v_{1}, \ldots, v_{d-r}$ be a path of order $d-r+1$. Let H be the graph obtained from $C_{2 r}$ and P_{d-r+1} by identifying v_{0} of P_{d-r+1} and u_{1} of $C_{2 r}$. Now, add $k-6$ new vertices $w_{1}, w_{2}, \ldots, w_{k-6}$ to the graph H and join w_{1} to u_{r}, and join each vertex $w_{i}(2 \leq i \leq k-d-2)$ to both u_{r+1} and u_{r-1}, thereby obtaining the graph G in Figure 2.6. Then rad $G=r$ and $\operatorname{diam} G=d$. Now, $S_{1}=\left\{w_{1}, w_{2}, \ldots, w_{k-d-2}, u_{r+1}, u_{2 r}, v_{d-r}\right\}$ is the set of all weak extreme vertices of G and $S_{2}=\left\{u_{r}, u_{1}, v_{1}, v_{2}, \ldots, v_{d-r-1}\right\}$ is the set of all cut-vertices of G. By Theorems 2.1 and 2.3, every connected double geodetic set contains $S_{1} \cup S_{2}$. Although $S_{1} \cup S_{2}$ is a double geodetic set, it is not a connected double geodetic set of G. It is clear that $T=S_{1} \cup S_{2} \cup\left\{u_{2}, u_{3}, \ldots, u_{r-1}\right\}$ is a minimum connected double geodetic set of G and so $d g_{c}(G)=k$.

References

1. F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
2. G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002), 1-6.
3. G. Chartrand, F. Harary , H.C. Swart and P. Zhang, Geodomination in graphs, Bulletin of the ICA 31 (2001), 51-59.
4. F. Harary, Graph Theory, Addision-Wesely, Reading, MA, 1969.
5. F. Harary, E. Loukakis, C. Tsouros, The geodetic number of a graph, Math. Comput.Modeling 17 (1993), 89-95.
6. R. Muntean and P. Zhang, On geodomonation in graphs, Congr. Numer. 143 (2000), 161174.
7. P.A. Ostrand, Graphs with specified radius and diameter, Discrete Mathematics 4 (1973), 71-75.
8. A.P. Santhakumaran and T. Jebaraj, Double geodetic number of a graph, Discuss. Math. Graph Theory 32 (2012), 109-119.
A.P. Santhakumaran received Ph.D. in Mathematics from Manonmaniam Sundaranar University, Tirunelveli, India. He was professor of Mathematics in St. Xavier's College(Autonomous), Palayamkottai, India from 1977 to 2012, and after retirement from Government service in 2012, he continued as professor of Mathematics in Hindustan Institute of Technology and Science, Chennai, India till 2017. His research interest includes convexity, centrality and domination in graphs. He has authored four text books and one research book in graph theory. He has successfully guided fifteen candidates for Ph.D. and published more than one hundred and twenty five research papers in reputed journals.

Former Professor, Department of Mathematics, Hindustan Institute of Technology and Science, Chennai-603 103, India.
e-mail: apskumar1953@gmail.com
T. Jebaraj received Ph.D. in Mathematics from Manonmaniam Sundaranar University, Tirunelveli, India. He was an assistant professor of Mathematics in CSI Institute of Technology, Thovalai, India from 2008 to 2018 . He is currently an assistant professor in the department of Mathematics in Malankara Catholic College, Mariagiri, India. His research interest includes geodetic and monophonic concepts in graphs. He has published more than six research papers in reputed journals.

Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliyakavilai-629 153, India.
e-mail: jebaraj.math@gmail.com

[^0]: Received August 20, 2020. Revised November 17, 2020. Accepted November 18, 2020. * Corresponding author.
 © 2021 KSCAM.

