• 제목/요약/키워드: n-Queue

검색결과 109건 처리시간 0.033초

M/En/1 큐에서 Overshoot에 대한 근사 (An Approximation to the Overshoot in M/En/1 Queues)

  • 배종호;정아름;김성곤
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.347-357
    • /
    • 2011
  • 본 논문은 M/$E_n$/1 큐에서 overshoot에 대한 근사식을 제안한다. overshoot은 큐의 작업부하량과정이 어떤 한계점을 처음으로 초과한 순간에 그 초과량을 의미하는데, overshoot의 분포 및 1차, 2차 적률은 큐의 최적화문제를 푸는데 중요한 역할을 한다. 본 논문에서는 그동안 이루어진 overshoot의 분포에 대한 이론적인 결과를 바탕으로 하여 overshoot의 분포를 고객의 서비스시간의 분포와 지수분포의 선형결합으로 표현하는 근사식을 제안한다. 그리고 제안된 근사식의 정확성을 확인하기 위하여 시뮬레이션을 통해 구한 overshoot의 분포와 비교한다.

DISCRETE-TIME ANALYSIS OF OVERLOAD CONTROL FOR BURSTY TRAFFIC

  • Choi, Doo-Il
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.285-295
    • /
    • 2001
  • We consider a queueing system under overload control to support bursty traffic. The queueing system under overload control is modelled by MMBP/D1/K queue with two thresholds on buffer. Arrival of customer is assumed to be a Markov-modulated Bernoulli process (MMBP) by considering burstiness of traffic. Analysis is done in discrete-time case. Using the generating function method, we obtain the stationary queue length distribution. Finally, the loss probability and the waiting time distribution of a customer are given.

TRANSIENT ANALYSIS OF A QUEUEING SYSTEM WITH MARKOV-MODULATED BERNOULLI ARRIVALS AND OVERLOAD CONTROL

  • Choi, Doo-Il
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.405-414
    • /
    • 2004
  • This paper considers overload control in telecommunication networks. Markov-modulated Bernoulli process ( MMBP ) has been extensively used to model bursty traffics with time-correlation. Thus, we investigate the transient behavior of the queueing system MMBP/D/l/K queue with two thresholds. The model is analyzed recursively by using the generating function method. We obtain the transient queue length distribution and waiting time distribution at an arbitrary time. The transient behavior of the queueing system helps observing the temporary system behavior.

AN ALGORITHMIC APPROACH TO THE MARKOV CHAIN WITH TRANSITION PROBABILITY MATRIX OF UPPER BLOCK-HESSENBERG FORM

  • Shin, Yang-Woo;Pearce, C.E.M.
    • Journal of applied mathematics & informatics
    • /
    • 제5권2호
    • /
    • pp.403-426
    • /
    • 1998
  • We present an algorithm to find an approximation for the stationary distribution for the general ergodic spatially-inhomogeneous block-partitioned upper Hessenberg form. Our approximation makes use of an associated upper block-Hessenberg matrix which is spa-tially homogeneous except for a finite number of blocks. We treat the MAP/G/1 retrial queue and the retrial queue with two types of customer as specific instances and give some numerical examples. The numerical results suggest that our method is superior to the ordinary finite-truncation method.

ASYMPTOTIC ANALYSIS OF THE LOSS PROBABILITY IN THE GI/PH/1/K QUEUE

  • Kim Jeong-Sim
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.273-283
    • /
    • 2006
  • We obtain an asymptotic behavior of the loss probability for the GI/PH/1/K queue as K tends to infinity when the traffic intensity p is strictly less than one. It is shown that the loss probability tends to 0 at a geometric rate and that the decay rate is related to the matrix generating function describing the service completions during an interarrival time.

ANALYSIS OF A QUEUEING SYSTEM WITH OVERLOAD CONTROL BY ARRIVAL RATES

  • CHOI DOO IL
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.455-464
    • /
    • 2005
  • In this paper, we analyze a queueing system with overload control by arrival rates. This paper is motivated by overload control to prevent congestion in telecommunication networks. The arrivals occur dependent upon queue length. In other words, if the queue length increases, the arrivals may be reduced. By considering the burstiness of traffics in telecommunication networks, we assume the arrival to be a Markov-modulated Poisson process. The analysis by the embedded Markov chain method gives to us the performance measures such as loss and delay. The effect of performance measures on system parameters also is given throughout the numerical examples.

STABILITY CONDITION OF DISCRETE-TIME $GEO^x$/G/1 QUEUE WITH PREEMPTIVE REPEAT PRIORITY

  • Lee, Yutae
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.291-297
    • /
    • 2003
  • This paper considers discrete-time two-class Ge $o^{X/}$G/1 queues with preemptive repeat priority. Service times of messages of each priority class are i.i.d. according to a general discrete distribution function that may differ between two classes. Completion times are derived for the preemptive repeat identical and different priority disciplines. By using the completion time, the stability condition for our system is investigated.d.

단일 휴가형 Geo/Geo/1/K 대기행렬의 바쁜 기간 분석 (Busy Period Analysis of the Geo/Geo/1/K Queue with a Single Vacation)

  • 김길환
    • 산업경영시스템학회지
    • /
    • 제42권4호
    • /
    • pp.91-105
    • /
    • 2019
  • Discrete-time Queueing models are frequently utilized to analyze the performance of computing and communication systems. The length of busy period is one of important performance measures for such systems. In this paper, we consider the busy period of the Geo/Geo/1/K queue with a single vacation. We derive the moments of the length of the busy (idle) period, the number of customers who arrive and enter the system during the busy (idle) period and the number of customers who arrive but are lost due to no vacancies in the system for both early arrival system (EAS) and late arrival system (LAS). In order to do this, recursive equations for the joint probability generating function of the busy period of the Geo/Geo/1/K queue starting with n, 1 ≤ n ≤ K, customers, the number of customers who arrive and enter the system, and arrive but are lost during that busy period are constructed. Using the result of the busy period analysis, we also numerically study differences of various performance measures between EAS and LAS. This numerical study shows that the performance gap between EAS and LAS increases as the system capacity K decrease, and the arrival rate (probability) approaches the service rate (probability). This performance gap also decreases as the vacation rate (probability) decrease, but it does not shrink to zero.