• Title/Summary/Keyword: n type Si

Search Result 866, Processing Time 0.034 seconds

Resistive Switching Effects of Zinc Silicate for Nonvolatile Memory Applications

  • Im, Minho;Kim, Jisoo;Park, Kyoungwan;Sok, Junghyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.348-352
    • /
    • 2022
  • Resistive switching behaviors of a co-sputtered zinc silicate thin film (ZnO and SiO2 targets) have been investigated. We fabricated an Ag/ZnSiOx/highly doped n-type Si substrate device by using an RF magnetron sputter system. X-ray diffraction pattern (XRD) indicated that the Zn2SiO4 was formed by a post annealing process. A unique morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). As a result of annealing process, 50 nm sized nano clusters were formed spontaneously in 200~300 nm sized grains. The device showed a unipolar resistive switching process. The average value of the ratio of the resistance change between the high resistance state (HRS) and the low resistance state (LRS) was about 106 when the readout voltage (0.5 V) was achieved. Resistance ratio is not degraded during 50 switching cycles. The conduction mechanisms were explained by using Ohmic conduction for the LRS and Schottky emission for the HRS.

Nano/Micro Friction with the Contact Area (접촉 면적에 따른 나노/마이크로 마찰 특성)

  • Yoon Eui-Sung;Singh R. Arvind;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.209-215
    • /
    • 2005
  • Nano/micro friction with the contact area was studied on Si-wafer (100) and diamond-like carbon (DLC) film. Borosilicate balls of radii $0.32{\mu}m,\;0.5{\mu}m,\;1.25{\mu}m\;and\;2.5{\mu}m$ mounted on the top of AFM tip (NPS) were used for nano-scale contact and Soda Lime glass balls of radii 0.25mm, 0.5mm, 1mm were used for micro-scale contact. At nano-scale, the friction between ball and surface was measured with the applied normal load using an atomic force microscope (AFM), and at micro scale it was measured using ball-on flat type micro-tribotester. All the experiments were conducted at controlled conditions of temperature $(24\pm1^{\circ}C)$ and humidity $(45\pm5\%)$. Friction was measured as a function of applied normal load in the range of 0-160nN at nano scale and in the range of $1000{\mu}N,\; 1500{\mu}N,\;3000{\mu}N\;and\;4800{\mu}N$ at micro scale. Results showed that the friction at nano scale increased with the applied normal load and ball size for both kinds of samples. Similar behavior of friction with the applied normal load and ball size was observed for Si-wafer at micro scale. However, for DLC friction decreased with the ball size. This difference of in behavior of friction in DLC nano- and microscale was attribute to the difference in the operating mechanisms. The evidence of the operating mechanisms at micro-scale were observed using scanning electron microscope (SEM). At micro-scale, solid-solid adhesion was dominant in Silicon-wafer, while plowing in DLC. Contrary to the nano scale that shows almost a wear-less situation, wear was prominent at micro-scale. At nano- and micro-scale, effect of contact area on the friction was discussed with the different applied normal load and ball size.

Comparison Analysis of Muscle Strength and Asymmetry according to Bowler Injury Experience and Type (볼링 선수 상해 경험과 유형에 따른 근력과 비대칭 비교 분석)

  • Byun, Ho-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.423-432
    • /
    • 2018
  • The purpose of this study was to investigate the differences in upper and lower strengths and symmetry between upper body injury group, lower body injury group and non-injury group of bowling athletes. The subjects were the upper body injury group (UG), n = 16, the low body injury group (LG), n = 8, the non injury group, [NG], n = 15). The isometric strength of the bowler was measured using Manual Muscle Tester 01165 (Lafayette Instrument Company, USA) and the symmetry index (SI) was calculated. The results were as follow. The symmetry index of hip extension strength and hip external rotation strength was statistically larger in NG than LG (p <.05). The above results suggest that lower body strength and bilateral symmetry was closely related to injuries of the lower body. In order to prevent injury of the bowler, strengthening of lower body strength and symmetrical training are needed.

Electrical properties of AZO transparent conductive oxide with substrate bias and $H_2$ annealing (DC 마그네트론 스퍼트링법으로 제조한 ZnO:N,Al 박막의 전기적 특성에 관한연구)

  • Liu, Yan-Yan;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.303-304
    • /
    • 2008
  • Al, N-codoped ZnO(ZnO:N,Al) thin films were deposited on n-type Si(100) substrate at $450^{\circ}C$ with various conditions of ambient gas$(N_2:O_2)$ by DC magnetron sputtering method using ZnO:$Al_2O_3$(2wt%) as a target, and then were annealed at 500, 700, $800^{\circ}C$ in $N_2$ gas for one hour. XRD patterns showed that all of the ZnO:N,Al thin films annealed at $80^{\circ}C$ grew with two peaks, which means poor crystallinity of the thin films deposited. Hall effects in Van der Pauw configuration proved that after annealing the films deposited showed low resistivity and high carrier concentration. While the films annealed at $800^{\circ}C$ showed low resistivity of $\sim10^{-2}\Omega$ cm and high carrier concentration of $\sim10^{19}cm^{-3}$.

  • PDF

Design and Implementation of Optical Receiving Bipolar ICs for Optical Links

  • Nam Sang Yep;Ohm Woo Young;Lee Won Seok;Yi Sang Yeou1
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.717-722
    • /
    • 2004
  • A design was done, and all characteristic of photodetectr of the web pattern type which a standard process of the Bipolar which Si PIN structure was used in this paper, and was used for the current amplifier design was used, and high-speed, was used as receiving optcal area of high altitude, and the module which had a low dark current characteristic was implemented with one chip with a base. Important area decreases an area of Ie at the time of this in order to consider an electrical characteristic and economy than the existing receiving IC, and performance of a product and confidence are got done in incense. First of all, the receiving IC which a spec, pattern of a wafer to he satisfied with the following electrical optical characteristic that produced receiving IC of 5V and structure are determined, and did one-chip is made. On the other hand, the time when AR layer of double is $Si_{3}N_{4}/SiO_{2}=1500/1800$ has an optical reflectivity of less than $10{\%}$ on an incidence optical wavelength of 660 ,and, in case of photo detector which reverse voltage made with 1.8V runs in 1.65V, an error about a change of thickness is very the thickness that can be improved surely. And, as for the optical current characteristic, about 5 times increases had the optical current with 274nA in 55nA when Pc was -27dBm. A BJT process is used, and receiving IC running electricity suitable for low voltage and an optical characteristic in minimum 1.8V with a base with two phases is made with one chip. IC of low voltage operates in 1.8V and 3.0V at the same time, and optical link receiving IC is going to be implemented

  • PDF

The Effect of Corrosion of Rolling Bearing Ceramics in Alkalic Solution on the Rolling Wear and Hardness (알카리용액에서 구름베어링용 세라믹스의 부식이 구름마모 및 경도에 미치는 영향)

  • 최인혁;김상근;박창남;윤대현;신동우
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.121-125
    • /
    • 2000
  • Silicon nitride ceramic has been verified as an excellent rolling bearing material because of its high strength and outstanding rolling fatigue life properties. However under some corrosive circumstances it showed drawbacks such as hardness reduction and severe wear caused by corrosion. In this work, the variations of the rolling wear and hardness of three kinds of ceramics were studied for the specimen aged 15 days in alkali water (90 $\pm$ 2$\^{C}$,25 wt% NaOH ). All of the specimens, ① Si$_3$N$_4$, ② 3Y-TZP and ③ 3Y-TZP alloyed with 5 wt% CeO$_2$, were sintered and post-HIPed, and then polished up to 0.02 $\mu$mRa of surface roughness. Rolling wear tests were conducted by MJ type rolling fatigue life tester under the initial theoretical maximum contact stress of 3.16 GPa and the spindle speed of 1,000 rpm. Spindle oil was used as a lubricant. The specimens were not worn before aging. For the specimen aged in alkali water, Si$_3$N$_4$ and 3Y-TZP were worn by rolling wear tests, and hardness was decreased. While aging the specimens, the phase was transformed from tetragonal to monoclinic in 3Y-TZP and the microstructure change occurred in Si$_2$N$_4$. 3Y-TZP specimens alloyed with 5 wt% CeO$_2$ were not worn after aging and no phase transformation occurred while aging.

The Effect of Corrosion of Rolling Bearing Ceramics in Alkalic Solution on the Rolling Wear and Hardness (알카리용액에서 구름베어링용 세라믹스의 부식이 구름마모 및 경도에 미치는 영향)

  • 최인혁;김상근;박창남;윤대현;신동우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.154-159
    • /
    • 1999
  • Silicon nitride ceramic has been verified as an excellent rolling bearing material because of its high strength and outstanding rolling fatigue life properties. However under some corrosive circumstances it showed drawbacks such as hardness reduction and severe wear caused by corrosion. In this work, the variations of the rolling wear and hardness of three kinds of ceramics were studied for the specimen aged 15 days in alkali water (90$\pm$2$^{\circ}C$, 25 wt% NaOH). All of the specimens, \circled1Si$_3$N$_4$, \circled23Y-TZP and \circled33Y-TZP alloyed with 5 wt% CeO$_2$, were sintered and post-Hipped, and then polished up to 0.02 ${\mu}{\textrm}{m}$Ra of surface roughness. Rolling wear tests were conducted by MJ type rolling fatigue life tester under the initial theoretical maximum contact stress or 3.76 Gra and the spindle speed of 1,000 rpm. Spindle oil was used as a lubricant. The specimens were not worn before aging. For the specimen aged in alkali water, Si$_3$N$_4$and 3Y-TZP were worn by rolling wear tests, and hardness was decreased. While aging the specimens, the phase was transformed from tetragonal to monoclinic in 3Y-TZP and the microstructure change occurred in Si$_3$N$_4$. 3Y-TZP alloyed with 5 wt% CeO$_2$specimens were not worn after aging and no phase transformation occurred while aging.

  • PDF

Manufacturing Technology for Tape Casting and Soft Magnetic Powder Using by Recycling Scrap of Fe-Si Electrical Sheet (Fe-Si 전기강판 폐스크랩을 이용한 연자성 분말 및 테이프 제조기술)

  • Hong, Won Sik;Kim, Sang Hyun;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • This study focused on examining the possibility for recycling of Fe-Si electric sheet. We manufactured Fe-6.5Si mother alloy using by Fe-Si electric sheet scrap for transformer core materials. And then, soft magnetic alloy powder which diameter and shape were $45{\sim}150{\mu}m$ and sphere type was prepared by gas atomization process. As we compared to commercial Fe-6.5Si powder, its diameter distribution and microstructure of recycled powder was a similar. To investigate the possibility of reusing the soft magnetic composite sheet for electronics, recycled powder was treated to have a high aspect ratio (AR), and we finally obtained the 65~66 AR and $2.3{\mu}m$ thickness powder. To release the residual stress of powder, heat treatment was conducted under $300{\sim}400^{\circ}C$, $N_2$ gas. And then, soft magnetic sheet was made by tape casting process using by those powders. After the density and permeability of tape was measured, and we confirmed that the recycled Fe-Si electric sheet scrap was possible to reuse the soft magnetic materials of electronics.

Recent Development of P-Tunnel Oxide Passivated Contact Solar Cells

  • Yang Zhao;Muhammad Quddamah Khokhar;Hasnain Yousuf;Xinyi Fan;Seungyong Han;Youngkuk Kim;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.332-340
    • /
    • 2023
  • Crystalline silicon solar cells have attracted great attention for their various advantages, such as the availability of raw materials, high-efficiency potential, and well-established processing sequence. Tunnel oxide passivated contact (TOPCon) solar cells are widely regarded as one of the most prospective candidates for the next generation of high-performance solar cells because an efficiency of 26% has been achieved in small-area solar cells. Compared to n-type TOPCon solar cells, the photo conversion efficiency (PCE) of p-type TOPCon is slightly higher. The highest PCEs of p-type TOPCon and n-type TOPCon solar cells are 26.0% and 25.8%, respectively. Despite the highest efficiency in small-area cells, limited progress has been achieved in p-type TOPCon solar cells for large are due to their lower carrier lifetime and inferior surface passivation with the boron-doped c-Si wafer. Nevertheless, it is of great importance to promoting the p-type TOPCon technology due to its lower price and well-established manufacturing procedures with slight modifications in the PERC solar cells production lines. The progress in different approaches to increase the efficiencies of p-type TOPCon solar cells has been reported in this review article and is expected to set valuable strategies to promote the passivation technology of p-type TOPCon, which could further increase the efficiency of TOPCon solar cells.

Preparation and Characterization of MFIS Using PT/BFO/$HFO_2$/Si Structures

  • Kim, Kwi-Junga;Jeong, Shin-Woo;Han, Hui-Seong;Han, Dae-Hee;Jeon, Ho-Seung;Im, Jong-Hyun;Park, Byung-Eun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.80-80
    • /
    • 2009
  • Recently, multiferroics have attracted much attention due to their numorous potentials. In this work, we attemped to utilize the multiferroics as an alternative material for ferroelectrics. Ferroelectric materials have been stadied to ferroelectric random access memories, however, some inevitable problems prevent it from inplementation. multiferroics shows a ferroelectricity and has low process temperature $BiFeO_3$(BFO) films have good ferroelectric properties but poor leakage characterization. Thus we tried, in this work, to adopt $HfO_2$ insulating layer for metal-ferroelectric-insulator-semiconductor(MFMIS) structure to surpress to leakage current. $BiFeO_3$(BFO) thin films were fabricared by using a sol-gel method on $HfO_2/Si$ structure. Ferroelectric BFO films on a p-type Si(100)wafer with a $HfO_2$ buffer layer have been fabricated to form a metal-ferroelectric-insulator-semiconductor (MFIS) structure. The $HfO_2$ insulator were deposited by using a sol-gel method. Then, they were carried out a rapid thermal annealing(RTA) furnace at $750\;^{\circ}C$ for 10 min in $N_2$. BFO films on the $HfO_2/Si$ structures were deposited by sol-gel method and they were crystallized rapid thermal annealing in $N_2$ atomsphere at $550\;^{\circ}C$ for 5 min. They were characterized by atomic force microscopy(AFM) and Capacitance-voltage(C-V) curve.

  • PDF