DOI QR코드

DOI QR Code

Recent Development of P-Tunnel Oxide Passivated Contact Solar Cells

  • Yang Zhao (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Muhammad Quddamah Khokhar (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Hasnain Yousuf (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Xinyi Fan (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Seungyong Han (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Youngkuk Kim (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Suresh Kumar Dhungel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Junsin Yi (College of Information and Communication Engineering, Sungkyunkwan University)
  • Received : 2023.04.12
  • Accepted : 2023.05.30
  • Published : 2023.07.01

Abstract

Crystalline silicon solar cells have attracted great attention for their various advantages, such as the availability of raw materials, high-efficiency potential, and well-established processing sequence. Tunnel oxide passivated contact (TOPCon) solar cells are widely regarded as one of the most prospective candidates for the next generation of high-performance solar cells because an efficiency of 26% has been achieved in small-area solar cells. Compared to n-type TOPCon solar cells, the photo conversion efficiency (PCE) of p-type TOPCon is slightly higher. The highest PCEs of p-type TOPCon and n-type TOPCon solar cells are 26.0% and 25.8%, respectively. Despite the highest efficiency in small-area cells, limited progress has been achieved in p-type TOPCon solar cells for large are due to their lower carrier lifetime and inferior surface passivation with the boron-doped c-Si wafer. Nevertheless, it is of great importance to promoting the p-type TOPCon technology due to its lower price and well-established manufacturing procedures with slight modifications in the PERC solar cells production lines. The progress in different approaches to increase the efficiencies of p-type TOPCon solar cells has been reported in this review article and is expected to set valuable strategies to promote the passivation technology of p-type TOPCon, which could further increase the efficiency of TOPCon solar cells.

Keywords

Acknowledgement

This research was supported by grants from the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Ministry of Trade, Industry, and Energy (MOTIE) (Project No.20218520010100 and 20203040010320).

References

  1. A. Blakers, IEEE J. Photovoltaics, 9, 629 (2019). [DOI: https://doi.org/10.1109/JPHOTOV.2019.2899460]
  2. J. Zhao, A. Wang, and M. A. Green, Prog. Photovoltaics: Res. Appl., 7, 471 (1999). [DOI: https://doi.org/10.1002/(sici)1099-159x(199911/12)7:6<471::aid-pip298>3.0.co;2-7]
  3. J. C. Stang, T. Franssen, J. Haschke, M. Mews, A. Merkle, R. Peibst, B. Rech, and L. Korte, Sol. RRL, 1, 1700021 (2017). [DOI:https://doi.org/10.1002/solr.201700021]
  4. D. Adachi, J. L. Hernandez, and K. Yamamoto, Appl. Phys. Lett., 107, 233506 (2015). [DOI: https://doi.org/10.1063/1.4937224]
  5. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, Nat. Energy, 2, 17032 (2017). [DOI: https://doi.org/10.1038/nenergy.2017.32]
  6. A. Richter, R. Muller, J. Benick, F. Feldmann, B. Steinhauser, C. Reichel, A. Fell, M. Bivour, M. Hermle, and S. W. Glunz, Nat. Energy, 6, 429 (2021). [DOI: https://doi.org/10.1038/s41560-021-00805-w]
  7. D. K. Ghosh, S. Bose, G. Das, S. Acharyya, A. Nandi, S. Mukhopadhyay, and A. Sengupta, Surf. Interfaces, 30, 101917 (2022). [DOI: https://doi.org/10.1016/j.surfin.2022.101917]
  8. F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells, 120, 270 (2014). [DOI: https://doi.org/10.1016/j.solmat.2013.09.017]
  9. A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells, 173, 96 (2017). [DOI: https://doi.org/10.1016/j.solmat.2017.05.042]
  10. S. Mack, D. Herrmann, M. Lenes, M. Renes, and A. Wolf, Sol. RRL, 5, 2100152 (2021). [DOI: https://doi.org/10.1002/solr.202100152]
  11. M. A. Green, E. D. Dunlop, G. Siefer, M. Yoshita, N. Kopidakis, K. Bothe, and X. Hao, Prog. Photovoltaics: Res. Appl., 31, 3 (2023). [DOI: https://doi.org/10.1002/pip.3646]
  12. Longi Claims 25.19% Efficiency for P-Type Topcon Solar Cell, https://www.pv-magazine.com/2021/07/21/longi-claims-25-19-efficiency-for-p-type-topcon-solar-cell/ (Accessed Jul. 21. 2021).
  13. International Technology Roadmap for Photovoltaic (ITRPV), Thirteenth Education, https://www.vdma.org/international-technologyroadmap-photovoltaic (Mar. 2023).
  14. X. Guo, M. Liao, Z. Rui, Q. Yang, Z. Wang, C. Shou, W. Ding, X. Luo, Y. Cao, J. Xu, L. Fu, Y. Zeng, B. Yan, and J. Ye, Sol. Energy Mater. Sol. Cells, 210, 110487 (2020). [DOI: https://doi.org/10.1016/j.solmat.2020.110487]
  15. R. Peibst, U. Romer, Y. Larionova, M. Rienacker, A. Merkle, N. Folchert, S. Reiter, M. Turcu, B. Min, J. Krugener, D. Tetzlaff, E. Bugiel, T. Wietler, and R. Brendel, Sol. Energy Mater. Sol. Cells, 158, 60 (2016). [DOI: https://doi.org/10.1016/j.solmat.2016.05.045]
  16. S. Mack, D. Herrmann, M. Lenes, M. Renes, and A. Wolf, Sol. RRL, 5, 2100152 (2021). [DOI: https://doi.org/10.1002/solr.202100152]
  17. F. Feldmann, M. Simon, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells, 131, 100 (2014). [DOI: https://doi.org/10.1016/j.solmat.2014.05.039]
  18. A. S. Kale, W. Nemeth, S. P. Harvey, M. Page, D. L. Young, S. Agarwal, and P. Stradins, Sol. Energy Mater. Sol. Cells, 185, 270 (2018). [DOI: https://doi.org/10.1016/j.solmat.2018.05.011]
  19. F. Feldmann, J. Schon, J. Niess, W. Lerch, and M. Hermle, Sol. Energy Mater. Sol. Cells, 200, 109978 (2019). [DOI: https://doi.org/10.1016/j.solmat.2019.109978]
  20. Z. Xin, Z. P. Ling, P. Wang, J. Ge, C. Ke, K. B. Choi, A. G. Aberle, and R. Stangl, Sol. Energy Mater. Sol. Cells, 191, 164 (2019). [DOI: https://doi.org/10.1016/j.solmat.2018.11.011]
  21. M. Q. Khokhar, H. Yousuf, S. Jeong, S. Kim, X. Fan, Y. Kim, S. K. Dhungel, and J. Yi, Trans. Electr. Electron. Mater., 24, 169 (2023). [DOI: https://doi.org/10.1007/s42341-023-00433-z]
  22. F. Feldmann, R. Muller, C. Reichel, and M. Hermle, Phys. Status Solidi RRL, 8, 767 (2014). [DOI: https://doi.org/10.1002/pssr.201409312]
  23. F. Feldmann, C. Reichel, R. Muller, and M. Hermle, Sol. Energy Mater. Sol. Cells, 159, 265 (2017). [DOI: https://doi.org/10.1016/j.solmat.2016.09.015]
  24. D. Ma, W. Liu, M. Xiao, Z. Yang, Z. Liu, M. Liao, Q. Han, H. Cheng, H. Xing, Z. Ding, B. Yan, Y. Wang, Y. Zeng, and J. Ye, Sol. Energy, 242, 1 (2022). [DOI: https://doi.org/10.1016/j.solener.2022.07.003]
  25. D. Yan, A. Cuevas, S. P. Phang, Y. Wan, and D. Macdonald, Appl. Phys. Lett., 113, 061603 (2018). [DOI: https://doi.org/10.1063/1.5037610]
  26. U. Romer, R. Peibst, T. Ohrdes, B. Lim, J. Krugener, T. Wietler, and R. Brendel, IEEE J. Photovoltaics, 5, 507 (2015). [DOI: https://doi.org/10.1109/JPHOTOV.2014.2382975]
  27. M. Winter, S. Bordihn, R. Peibst, R. Brendel, and J. Schmidt, IEEE J. Photovoltaics, 10, 423 (2020). [DOI: https://doi.org/10.1109/jphotov.2020.2964987]
  28. B. Nemeth, D. L. Young, M. R. Page, V. LaSalvia, S. Johnston, R. Reedy, and P. Stradins, J. Mater. Res., 31, 671 (2016). [DOI:https://doi.org/10.1557/jmr.2016.77]
  29. M. Schnabel, B.W.H. van de Loo, W. Nemeth, B. Macco, P. Stradins, W.M.M. Kessels, and D. L. Young, Appl. Phys. Lett., 112, 203901 (2018). [DOI: https://doi.org/10.1063/1.5031118]
  30. D. L. Young, B. G. Lee, D. Fogel, W. Nemeth, V. LaSalvia, S. Theingi, M. Page, M. Young, C. Perkins, and P. Stradins, IEEE J. Photovoltaics, 7, 1640 (2017). [DOI: https://doi.org/10.1109/jphotov.2017.2748422]
  31. S. Mack, M. Lenes, J. M. Luchies, and A. Wolf, Phys. Status Solidi RRL, 13, 1900064 (2019). [DOI: https://doi.org/10.1002/pssr.201900064]
  32. M. K. Stodolny, J. Anker, C.J.J. Tool, M. Koppes, A. A. Mewe, P. Manshanden, M. Lenes, and I. G. Romijn, Proc. 35th European Photovoltaic Solar Energy Conference and Exhibition (International Conference EU PVSEC for Photovoltaic Research, Brussels, Belgium, 2018), p. 414.
  33. A. Morisset, R. Cabal, B. Grange, C. Marchat, J. Alvarez, M. E. Gueunier-Farret, S. Dubois, and J. P. Kleider, Phys. Status Solidi A, 216, 1800603 (2019). [DOI: https://doi.org/10.1002/pssa.201800603]
  34. K. Tao, S. Jiang, R. Jia, Y. Zhou, P. Zhang, X. Dai, H. Sun, Z. Jin, and X. Liu, Sol. Energy, 176, 241 (2018). [DOI: https://doi.org/10.1016/j.solener.2018.10.034]
  35. M. Lozac'h, S. Nunomura, and K. Matsubara, Sol. Energy Mater. Sol. Cells, 207, 110357 (2020). [DOI: https://doi.org/10.1016/j.solmat.2019.110357]