• Title/Summary/Keyword: n'-site

Search Result 2,287, Processing Time 0.028 seconds

Recent Progress in the Identification of Active Sites in Pyrolyzed Fe-N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction

  • Sa, Young Jin;Kim, Jae Hyung;Joo, Sang Hoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2017
  • Iron and nitrogen codoped carbon (Fe-N/C) catalysts have emerged as one of the most promising replacements for state-of-the-art platinum-based electrocatalysts for oxygen reduction reaction (ORR) in polymer electrolyte fuel cells. During the last decade, significant progress has been achieved in Fe-N/C catalysts in terms of ORR activity improvement and active site identification. In this review, we focus on recent efforts towards advancing our understanding of the structure of active sites in Fe-N/C catalysts. We summarize the spectroscopic and electrochemical methods that are used to analyze active site structure in Fe-N/C catalysts, and the relationship between active site structure and ORR activity in these catalysts. We provide an overview of recently reported synthetic strategies that can generate active sites in Fe-N/C catalysts preferentially. We then discuss newly suggested active sites in Fe-N/C catalysts. Finally, we conclude this review with a brief future outlook.

Investigation of the groundwater contamination around landfill where slaughtered animals were buried

  • Bark, Jun-Jo;Jung, Hae-Sun;Woo, Jong-Tae;Lee, Sung-Sik
    • Korean Journal of Veterinary Service
    • /
    • v.29 no.4
    • /
    • pp.459-467
    • /
    • 2006
  • This study was designed to investigate if there were groundwater contamination in 17 landfill where slaughtered animals were buried during the crisis of 2002 foot-and-mouth-disease (FMD) outbreaks in Gyeonggi province. From March to August 2005 groundwater was collected once a month from 17 sites, and examined with potential for hydrogen (pH), colour, turbidity, lead (Pb), arsenic (As), mercury (Hg), cadmium (Cd), copper (Cu), zinc (Zn) , iron (Fe), manganese (Mn) , aluminium (Al), nitrate-nitrogen $(NO_3-N)$, ammonia-nitrogen $(NH_3-N)$, microbial pathogen and Escherichia spp. In the examination of $NH_3-N$ which of the mean concentration was from not-detected (ND) to 0.05 mg/l. The range of $NH_3-N$ level was $0.3-24.1mg/{\ell}$. However, groundwater from four sites was to go beyond the drinking water quality standard (DWQS), i.e., the mean concentration of those were $15.5mg/{\ell}\;(site\;1),\;20.7mg/{\ell}\;(site\;9),\;24.1mg/{\ell}\;(site\;13)\;and\;10.6mg/{\ell}\;(site\;17)$. In the investigation of pH, colour and turbidity, all of the pH were below of DWQS (pH 5.8-6.6), but one site in color test and four sites in turbidity test were over the standard level. Among 9 metal ions examined, Mn was in excess of DWQS, and its concentration was $2.4mg/{\ell}$. Pb, Cd, Hg and As were not traced. The contents of Cu, Zn, Fe and Al were $ND-0.22mg/{\ell},\;0.01-0.05mg/{\ell},\;ND-0.05mg/{\ell}\;and\;0.03-0.16mg/{\ell}$, respectively. Escherichiae spp were not identified, but bacterial colonies were detected at 3 groundwater including 2 sites over the DWQS at the level of $491CFU/m{\ell}\;(site\;4)\;and\;217CFU/m{\ell}\;(site\;15)$.

On-the-go Nitrogen Sensing and Fertilizer Control for Site-specific Crop Management

  • Kim, Y.;Reid, J.F.;Han, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 2006
  • In-field site-specific nitrogen (N) management increases crop yield, reduces N application to minimize the risk of nitrate contamination of ground water, and thus reduces farming cost. Real-time N sensing and fertilization is required for efficient N management. An 'on-the-go' site-specific N management system was developed and evaluated for the supplemental N application to com (Zea mays L.). This real-time N sensing and fertilization system monitored and assessed N fertilization needs using a vision-based spectral sensor and controlled the appropriate variable N rate according to N deficiency level estimated from spectral signature of crop canopies. Sensor inputs included ambient illumination, camera parameters, and image histogram of three spectral regions (red, green, and near-infrared). The real-time sensor-based supplemental N treatment improved crop N status and increased yield over most plots. The largest yield increase was achieved in plots with low initial N treatment combined with supplemental variable-rate application. Yield data for plots where N was applied the latest in the season resulted in a reduced impact on supplemental N. For plots with no supplemental N application, yield increased gradually with initial N treatment, but any N application more than 101 kg/ha had minimal impact on yield.

  • PDF

Role of a Putative N-Glycosylation Site in Bovine Retinal Cyclic Nucleotide-Gated Channel

  • Park, Seong-Hwan;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.25-25
    • /
    • 1997
  • Cyclic nucleotide-gated channels (CNGC's) contain a putative N-glycosylation site (Asn-X-Ser/Thr) in the linker regions connecting the fourth transmembrane domain (S4) and the ion conduction pore (P-region). This putative N-glycosylation site is highly conserved and thus found in many different CNGC in various organisms, from fruit to human.(omitted)

  • PDF

Effects of Fire on KDICical Properties of Soil and Runoff, and Phytomass in Pinus densiflora Forest Effects of Fire on KDICical Properties of Soil and Runoff, and Phytomass in Pinus densiflora Forest Effects of Fire on KDICical Properties of Soil and Runoff, and Phytomass in Pinus densiflora Forest (산화가 소나무림의 토양과 유출수의 화학적 성질 및 식물량에 미치는 영향)

  • Choung, Yeon Sook;Joon Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.10 no.3
    • /
    • pp.129-138
    • /
    • 1987
  • In a red pine (Pinus densiflora) forest, changes of pH, electric conductivity, total carbon, total nitrogen, available phosphate and available potassium in soil and runoff have been studied at intervals for 1 year after early spring fire. Phytimasses of herb and shrub were measured following the current and the subsequent year. The pH, E.C., total nitrogen and phosphate of soil in burned site wee 1.1, 1.5, 1.6 and 2.0 times higher than in unburned site, respectively. But potassium showed no significant difference. A rise in pH, E.C., and total nitrogen in burned site were maintained throught the study period while phosphate maintained 4 months after the fire. The E.C., total carbon, $NO_2-N$ and $NH_4-N$ of runoff in burned site were 1.3, 1.3, 1.3 and 29.0 times higher than in unburned site, respectively, while $NO_3-N$ in unburned site was 4 times higher than in burned site. In burned site, phytomasses of herb and shrub were 148 and 33% of unburned site in a current year and 107 and 51% in a subsequent year, respectively. The considerable amount of increase in soil nutrient after the fire was conserved by the uptake of the fast regrowing plants and by the immobilization of $NH_4=N$.

  • PDF

The nonconserved N-terminus of protein phosphatases 1 influences its active site

  • Xie, XiuJie;Huang, Wei;Xue, ChengZhe;Wei, Qun
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.881-885
    • /
    • 2008
  • Protein phosphatase 1 consists of a secondary structure arrangement, conserved in the serine/threonine protein phosphatase gene family, flanked by nonconserved N-terminal and C-terminal domains. The deletion mutant of PP1 with the 8 nonconserved N-terminal residues removed was designated PP1-(9-330). PP1-(9-330) had a higher activity and affinity than PP1 when assayed against four different substrates, and it also demonstrated a 6-fold higher sensitivity to the inhibitor okadaic acid. This suggested that the N-terminal domain suppresed the activity of PP1 and interfered with its inhibition by okadaic acid. The ANS fluorescence intensity of PP1-(9-330) was greater than that of PP1, which implies that the hydrophobic groove running from active site in the truncated PP1 was more hydrophobic than in PP1. Our findings provide evidence that the nonconserved N-terminus of PP1 functions as an important regulatory domain that influences the active site and its pertinent properties.

A Density-Functional Theory Study on Mechanisms of the Electrochemical Nitrogen Reduction Reaction on the Nickel(100) Surface (범밀도함수이론에 기초한 니켈(100) 표면에서의 전기화학적 질소환원반응 메커니즘에 관한 연구)

  • Minji Kim;Sangheon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.604-610
    • /
    • 2023
  • The nitrogen reduction reaction (NRR), which produces NH3 by reducing N2 under ambient conditions, is attracting attention as a promising technology that can reduce energy consumption in industrial processes. We investigated the adsorption behaviors at various active sites on the Ni (100) surface, which is widely used among catalytic metal surfaces capable of adsorbing and activating N2, based on density-functional theory calculations. We also investigated two N2 adsorption structures, so-called end-on and side-on structures. We find that for the end-on case, N2 is adsorbed on a top site, and the reaction proceeded in a distal pathway, while for the side-on case, N2 is adsorbed on a bridge site, and the reaction proceeded with enzymatic pathway. Finally, this study provides insight into the adsorption of metal catalyst surfaces for the NRR reactions based on the calculated Gibbs free energy profiles of the thermodynamically most favorable pathways.

Simultaneous Determiniation of Ar/$N_2$Ratios in Groundwater (지하수에 용해된 질소, 아르곤 가스의 동시측정)

  • Kim, Euisik;Roy F. Spalding
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.6-9
    • /
    • 1994
  • Previously reported Ar/N$_2$ratios in groundwater have been measured by single ion monitoring (Barnes et al., 1975; Vogel et al., 1981; Mariotti et al., 1988). The detector geometry and flared flight tube in VG Optima isotopic ratio mass spectrometer appeared to be fortuitously aligned for the simultaneous measurement of Ar/N$_2$ratios. Method development included mechanical adjustments to optimize the mass spectrometer for Ar/N$_2$ratio measurements followed by development of a preparation system for the extraction of air-saturated water samples. Samples containing known Ar/N$_2$ratios were used to assess accuracy and precision, and to test the applicability of methods for measurements of aqueous Ar/N$_2$ratios. The results indicated that the prepared air-saturated water samples were almost identical to the predicted Ar/N$_2$ratios (p <0.001). Groundwater samples were collected from on-going research sites, Shelton and Grand Island, Nebraska. Samples from the Grand Island sludge injection site form a lower boundary for worldwide reported Ar/N$_2$ratios. These lower Ar/N$_2$ratios can be explained by the production of nitrogen gas from this site, where denitrification was reported previously.

  • PDF

Distribution of heterotrophic bacteria and physico-chemical characteristics of sediments in Kum river estuary (금강 하구 퇴적토의 이화학적 성질과 종속영양세균의 분포에 관하여)

  • 이건형;아영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.308-316
    • /
    • 1986
  • Vertical distribution of heterotrophic bacteria and physico-chemical characteristics were measuted in Kum River estuarine sediments. And interrelationship between heterotrophic bacterka and environmental factors was also studied. The type of sediment of Site 1 was silty clay, and sand at Site 2. Annual pH ranges were between 7.1 and 7.7 in the clay type sediment (Site 1) and 6.9-7.2 in the sand type sediment (Site 2). It was shown that organic matter contents were higher in the clay type sediment than those of sand type sediment. Redox potential values of sediments were decreased rapidly with depth at Site 1, but those of Sete 2 showed vertical fluctuation. Nitrogens(ammonia+amino acid-N, nitrate-N, nitrite-N) and phosphate in the clay type sediment showed higher values than those of sand type sediment. Annual distribution of heterotrophic bacteria were ranged $6.71{\times}10^4$ cells/g dry wt. $-2.50{\times}10^6$ cells/g dry wt. In the clay type sediment and $2.67{\times}10^3$ cells/g dry wt. $-1.94{\times}10^6$ cells/g dry wt. in the sand type sediment. Distribution of proteolytic, lipolytic, and amylolytic bacteria were decreased with the depth and the highest density was found in April and the lowest in January. Bacterial populations in sediments were closely correlated with such environmental factors as pH, redox potential, moisture content, organic matter contents, and inorganic nutrients such as nitrite-N and phosphate-P.

  • PDF

The Nitrogen Behavior and Budget in Lake Paldang (팔당호의 질소거동과 수지)

  • Lee, Jangho;Park, Hae-Kyung;Lee, Kyoo;Kim, Eunmi
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.71-80
    • /
    • 2010
  • We studied the nitrogen behavior and budget of Lake Paldang from March to December 2008. The particulate nitrogen (PN) concentrations ranged from 7 to 13% of the total nitrogen concentration (TN) in the stream inflows, the downstream outflow, and the lake water. The nitrate nitrogen ($NO_3-N$) concentration ranged from 67 to 78% of the TN. In the three rivers of Lake Paldang, Gyeongan River (In3 site) had the highest average of the TN, 5.037 mgN/L, but North Han River (In2 site) had the lowest average TN, 1.683 mgN/L. South Han River (In1 site) had the average TN of 2.399 mgN/L. In the dam discharge, TN showed the average 2.063 mgN/L. In the lake water, L4 site (Gyeongan River area) had the highest average TN, 3.781 mgN/L, but L3 site (North Han River) had the lowest average TN, 1.587 mgN/L. Total input of nitrogen loads to Lake Paldang was about 30,875 ton/year in 2008. Inflow rivers contributed 30,643 ton/year (South Han River: 18,111 ton/year (59%), North Han River: 11,333 ton/year (37%), and Gyeongan River: 1,199 ton/year (4%)). The atmospheric deposition had 135 ton/year, the nitrogen release from the bottom sediments had 88 ton/year, and macrophytes had 9 ton/year. Total output of nitrogen loads from Lake Paldang was about 31,256 ton/year. The downstream from dam contributed 29,877 ton/year, and the sediment deposition was 1,379 ton/year.