• Title/Summary/Keyword: myo-Inositol monophosphate phosphatase

Search Result 2, Processing Time 0.018 seconds

Chemical Modification of Porcine Brain myo-Inositol Monophosphate Phosphatase by N-bromosuccinimide

  • Lee, Byung-Ryong;Bahn, Jae-Hoon;Jeon, Seong-Gyu;Ahn, Yoon-Kyung;Yoon, Byung-Hak;Kwon, Hyeok-Yil;Kwon, Oh-Shin;Choi, Soo-Young
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.294-298
    • /
    • 1999
  • Myo-inositol monophosphate phosphatase is a key enzyme in the phosphoinositide cell-signaling system. Incubation of myo-inositol monophosphate phosphatase from porcine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $3.8{\times}10^3\;M^{-1}min^{-1}$. The time course of the reaction was significantly affected by the substrate myo-inositol-1-phosphate, which afforded complete protection against the loss of catalytic activity. Spectrophotometric studies indicated that about one oxindole group per molecule of enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of myo-inositol monophosphate phosphatase is modulated by the binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

Inactivation of Brain myo-Inositol Monophosphate Phosphatase by Pyridoxal-5'-Phosphate

  • Kim, Dae-Won;Hong, Joung-Woo;Eum, Won-Sik;Choi, Hee-Soon;Choi, Soo-Hyun;Kim, So-Young;Lee, Byung-Ryong;An, Jae-Jin;Lee, Sun-Hwa;Lee, Seung-Ree;Kwon, Oh-Shin;Kwon, Hyeok-Yil;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Choi, Soo-Young
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Myo-inositol monophosphate phosphatase (IMPP) is a key enzyme in the phosphoinositide cell-signaling system. This study found that incubating the IMPP from a porcine brain with pyridoxal-5'-phosphate (PLP) resulted in a time-dependent enzymatic inactivation. Spectral evidence showed that the inactivation proceeds via the formation of a Schiff's base with the amino groups of the enzyme. After the sodium borohydride reduction of the inactivated enzyme, it was observed that 1.8 mol phosphopyridoxyl residues per mole of the enzyme dimer were incorporated. The substrate, myo-inositol-1-phosphate, protected the enzyme against inactivation by PLP. After tryptic digestion of the enzyme modified with PLP, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. Amino acid sequencing of the peptide identified a portion of the PLP-binding site as being the region containing the sequence L-Q-V-S-Q-Q-E-D-I-T-X, where X indicates that phenylthiohydantoin amino acid could not be assigned. However, the result of amino acid composition of the peptide indicated that the missing residue could be designated as a phosphopyridoxyl lysine. This suggests that the catalytic function of IMPP is modulated by the binding of PLP to a specific lysyl residue at or near its substrate-binding site of the protein.