• Title/Summary/Keyword: mutant p50

Search Result 123, Processing Time 0.026 seconds

Study on the expression and detection of the p53 mutation in Korean colon cancer cell lines (한국인의 대장암 세포주에서 p53 돌연변이의 발견과 발현에 관한 연구)

  • Jung, Ji-Yeon;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.151-161
    • /
    • 2001
  • Background: Inactivation in p53 tumor suppressor gene through a point mutation and deletion is one of the most frequent genetic changes found in human cancer, with 50% of an incidence. This high rate of mutation mostly suggests that the gene plays a central role in the development of cancer and the mutations detected so far were found in exons 5 to 8. Mutation of p53 locus produced accumulation of abnormal p53 protein, and negative regulation of cell proliferation and transcriptional activation as a suppressor of transformation were lost. In addition, inhibition of its normal cellular function of wild-type by mutant is an important step in tumorigenesis. Method: 4 colon cancer cell lines (SNU C1, C2A, C4, C5) were examined for mutation in exons 5 to 8 of the p53 tumor suppressor gene by PCR-SSCP analysis and expression pattern by western blotting and immunoprecipitation. p53-mediated transactivation ability were examined by CAT assay and base substitution of p53 in SNU C2A cell were detected by DNA sequencing. Results: 1) SNU C2A cell and SNU C5 cell were detected mobility shifts each in exon 5 and exon 7 of p53 gene by the PCR-SSCP method, implicating being of p53 mutation. 2) 3 colon cancer cell lines (SNU C1, SNU C2A, SNU C5) expressed wild type and mutant type p53 protein. 3) In northern blot experiment, SNU C2A and SNU C5 cell expressed high level of p53 mRNA. 4) Results of p53-mediated transactivation in colon cancer cell lines by CAT assay represented only SNU C2A cell has transcriptional activity. 5) DNA sequencing in SNU C2A cell showed missense mutation in codon 179 of one allele, histidine to arginine and wild type p53 in the other allele. Conclusion: Colon cancer cell lines showed correlation with mutation in p53 gene and accumulation of abnormal p53 protein. Colon cancer cell SNU C2A retained p53-mediated transactivation as heterozygous p53 with one mutant allele in 179 codon and the other wild-type allele.

  • PDF

Pro-Apoptotic Role of the Human YPEL5 Gene Identified by Functional Complementation of a Yeast moh1Δ Mutation

  • Lee, Ji Young;Jun, Do Youn;Park, Ju Eun;Kwon, Gi Hyun;Kim, Jong-Sik;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.633-643
    • /
    • 2017
  • To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1, the yeast ortholog, was compared with that of the wild-type (WT)-MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The $moh1{\Delta}$ mutant exhibited enhanced cell viability compared with the WT-MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, $100{\mu}M$ CPT, heat shock at $50^{\circ}C$, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT-MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the $moh1{\Delta}$ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2-YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT-MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (${\Delta}{\psi}m$) loss, and metacaspase activation, occurred to a much lesser extent in the $moh1{\Delta}$ mutant compared with the WT-MOH1 strain and the mutant strain bearing pYES2-MOH1 or pYES2-YPEL5. These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.

Isolation, Production, and Characterization of Protease from Bacillus subtilis IB No. 11

  • Lee, Min-Hyang;Lee, Kang-Moon;Choi, Yong-Jin;Baek, Yeon-Soo
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.527-536
    • /
    • 2009
  • A potent protein degrading bacterium was isolated from soil samples of different environments. Polyphasic taxonomic studies and phylogenetic 16S rRNA sequence analyses led to identify the isolate IB No. 11 as a strain of Bacillus subtilis. The isolated strain was recognized to produce protease constitutively, and the maximum production (1.64 units/ml) was attained in a shake flask culture when the isolate was grown at $40^{\circ}C$, for 32 h in basal medium supplemented with starch (0.25%) and gelatin (1.25%) as sole carbon and nitrogen source, respectively. The optimum pH and temperature for the protease activity were determined to be pH 7.0 and $50^{\circ}C$, respectively. $Ca^{2+}$ and $Mn^{2+}$ enhanced remarkably the protease activity but neither showed positive effect on the protease's thermal stability. In addition, it was observed that the protease was fairly stable in the pH range of 6.5-8.0 and at temperatures below $50^{\circ}C$, and it could be a good candidate for an animal feed additive. The inhibition profile of the protease by various inhibitors indicated that the enzyme is a member of serine-proteases. A combination of UV irradiation and NTG mutagenesis allowed to develop a protease hyper-producing mutant strain coded as IB No. 11-4. This mutant strain produced approximately 3.23-fold higher protease activity (6.74 units/mg) than the parent strain IB No. 11 when grown at $40^{\circ}C$ for 32h in the production medium. The protease production profile of the selected mutants was also confirmed by the zymography analysis.

Mutagenesis of Slow Growing Rhizobium japonicum by Transposon Tn5 (Transposon Tn5를 이용한 Slow growing Rhizobium japonicum의 돌연변이 유도)

  • Kim, Sung-Hoon;Rhee, Yoon;Sun, Dae-Kyu;Yoo, Ick-Dong
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.305-311
    • /
    • 1988
  • The spectinomycin resistant strain of slow growing R. japonicum R-168 was selected to be participated in conjugation with E. coli WA803/pGS9. Tn5 was introduced from suicide vector pGS9 into R. japonicum R-168 $spr^{r}$ chromosome at the frequency of $1.0\times 10^{-5}-5.0\times 10^{-7}$ and the transconjugante were selected on the yeast extract-mannitol plate containing kanamycin ($50{\mu}$g/ml) and spectinomycin ($100{\mu}$g/ml) after 8-9 days incubation. All transconjugants we tested were found to contain Tn 5 DNA on their genome, which was confirmed by Southern hybridization experiments. R. japonicum RNa75, which had been selected through plant test, was found to be defective in symbiotic nitrogen fixing ability and the production of leghemoglobin in soybean nodules formed by the inoculation of this mutant. In addition, this mutant strain hardly developed nitrogenase activity asymbiotically in contrast with the wild type strain, indicating that some nitrogen fixing gene might be blocked in this strain and the production of leghemoglobin could be decreased by the interference in nitrogen fixing genes.

  • PDF

Saccharomyces cerevisiae Hsp30 is Necessary for Homeostasis of a Set of Thermal Stress Response Functions

  • Thakur, Suresh;Chakrabarti, Amitabha
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.403-409
    • /
    • 2010
  • Saccharomyces cerevisiae Hsp30 is a plasma membrane heat shock protein that is induced by various environmental stress conditions. However, the functional role of Hsp30 during diverse environmental stressors is not presently known. To gain insight into its function during thermal stress, we have constructed and characterized a ${\Delta}hsp30$ strain during heat stress. $BY4741{\Delta}hsp30$ cells were found to be more sensitive compared with BY4741 cells, when exposed to a lethal heat stress at $50^{\circ}C$. When budding yeast is exposed to either heat shock or weak organic acid, it inhibits Pma1p activity. In this study, we measured the levels of Pma1p in mutant and Wt cells both during optimal temperature and heat shock temperature. We observed that $BY4741{\Delta}hsp30$ cells showed constitutive reduction of Pma1p. To gain further insights into the role of Hsp30 during heat stress, we compared the total protein profile by 2D gel electrophoresis followed by identification of differentially expressed spots by LC-MS. We observed that contrary to that expected from thermal-stress-induced changes in gene expression, the ${\Delta}hsp30$ mutant maintained elevated levels of Pdc1p, Trx1p, and Nbp35p and reduced levels of Atp2p and Sod1p during heat shock. In conclusion, Hsp30 is necessary during lethal heat stress, for the maintenance of Pma1p and a set of thermal stress response functions.

The Structural and Functional Role of p53 as a Cancer Therapeutic Target (암 치료 표적으로서 p53의 구조적 및 기능적 역할)

  • Han, Chang Woo;Park, So Young;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.488-495
    • /
    • 2018
  • The p53 gene plays a critical role in the transcriptional regulation of cellular response to stress, DNA damage, hypoxia, and tumor development. Keeping in mind the recently discovered manifold physiological functions of p53, its involvement in the regulation of cancer is not surprising. In about 50% of all human cancers, inactivation of p53's protein function occurs either through mutations in the gene itself or defects in the mechanisms that activate it. This disorder plays a crucial role in tumor evolution by allowing the evasion of a p53-dependent response. Many recent studies have focused on directly targeting p53 mutants by identifying selective, small molecular compounds to deplete them or to restore their tumor-suppressive function. These small molecules should effectively regulate various interactions while maintaining good drug-like properties. Among them, the discovery of the key p53-negative regulator, MDM2, has led to the design of new small molecule inhibitors that block the interaction between p53 and MDM2. Some of these small molecule compounds have now moved from proof-of-concept studies into clinical trials, with prospects for further, more personalized anti-carcinogenic medicines. Here, we review the structural and functional consequences of wild type and mutant p53 as well as the development of therapeutic agents that directly target this gene, and compounds that inhibit the interaction between it and MDM2.

Transcriptional Analysis Responding to Propanol Stress in Escherichia coli (대장균에서 프로판올 스트레스에 관한 전사분석)

  • Park, Hye-Jin;Lee, Jin-Ho
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.417-427
    • /
    • 2012
  • We compared the transcriptome in response to propanol stress in wild-type and propanol-resistant mutant Escherichia coli using the DNA microarray technique. The correlation value of RNA expression between the propanol-treated wild type and the untreated-one was about 0.949, and 50 genes were differentially expressed by more than twofold in both samples. The correlation value of RNA expression between the propanol-treated mutant and the untreated one was about 0.951, and 71 genes in two samples showed differential expression patterns. However, the values between the wild type and mutant, regardless of propanol addition, were 0.974-0.992 and only 1-2 genes were differentially expressed in the two strains. The representative characteristics among differentially expressed genes in W3110 or P19 treated with propanol compared to untreated samples were up-regulation of hest shock response genes and down-regulation of genes relating to ribosome biosynthesis. In addition, many genes were regulated by transcription regulation factors such as ArcA, CRP, FNR, H-NS, GatR, or PurR and overexpressed by sigma factor RpoH. We confirmed that RpoH mediated an important host defense function in propanol stress in E. coli W3110 and P19 by comparison of cell growth rate among the wild type, rpoH disruptant mutant, and rpoH-complemented strain.

Optimization of Production of Pigment from Monascus sp. in Liquid Culture (액체배양에 의한 홍국색소 생산의 최적배양조건)

  • Seo, Young-Eun;Jung, Hyuck-Jun;Hong, Soon-Myung;Yu, Tae-Shick
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.59-65
    • /
    • 2007
  • The optimal conditions for Monascus pigments production of Monascus sp. KM 1001, pigment overproducing mutant, in submerged culture was investigated. The optimal medium for the production of pigment from KM 1001 mutant is determined to be composed of 4% rice powder, 0.15% Bacto-peptone, 0.1% glycine, 0.01% $FeSO_{4}{\cdot}7H_{2}O,\;0.1%\;MgSO_{4}{\cdot}7H_{2}O,\;0.25%\;KH_{2}PO_{4},\;pH4.5$. On optimal conditions,10.0 g/L of the cell mass was obtained at $30^{\circ}C$ for 5 days. Yellow, orange and red pigment of Monascus sp. KM 1001 were produced 3.25 units, 1.59 units and 0.88 units in extracellular part, and 84.96 units, 78.84 units and 91.80 units in intracellular part, respectively.

Purification and Characterization of Two Extracellular Glucoamylase Isozymes from Lipomyces kononenkoae CBS 5608 Mutant

  • Chun, Soon-Bai;Bai, Suk;Im, Suhn-Young;Choi, Won-Ki;Lee, Jin-Jong
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.375-381
    • /
    • 1995
  • Two forms of glucoamylase (GI and GII) from starch-grown Lipomyces kononenkoae CBS 5608 mutant were purified to apparent homogeneity by means of ultrafiltration, Sephacryl S-200 gel filtration and DEAE Sephadex A-50 chromatography. The apparent molecular weight was calculated as ca. 150 kDa for GI and ca. 128 kDa for GII, respectively. Both enzymes were glycoproteins with isoelectric points of 5.6 (GI) and 5.4 (GII). They had a pH optimun of 4.5 and were stable from pH 5 to 8. The temperature optimum for both enzymes was $60^{\circ}C$, but they were rapidly inactivated above $70^{\circ}C$. The $K_m$ values toward starch were estimated to be 6.57 mg per ml for GI and 4.52 mg per ml for GII, and the $V_{max}$ values were 16.28 ${\mu}M$ per mg for GI and 32.25 ${\mu}M$ per mg for GII, respectively. The $K_m$ and $V_{max}$ values of GII for ${\alpha}-$ or ${\beta}-cyclodextrin$ were estimated to be 0.15 mg per ml and 2.0 mg per ml, respectively ($K_m$) and 1.02 ${\mu}M$ per mg or 1.02 ${\mu}M$ per mg, respectively ($V_{max}$). Neither enzyme exhibited pullulanase activity but they released only glucose from starch or cyclodextrin. Amino acid analysis indicated that both glucoamylases were enriched in proline and acid amino acids. Glucoamylase GII strongly cross-reacted with a monoclonal antibody raised against GI enzymes, and the two enzymes shared very similar amino acid composition. Western blot analysis indicated that L. kononenkoae CBS 5608 mutant produced two forms of glucoamylase on starch, and that synthesis of them was subject to glucose repression.

  • PDF

Development of a Genome-Wide Random Mutagenesis System Using Proofreading-Deficient DNA Polymerase ${\delta}$ in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Oh Cheol;Kim, Sang-Yoon;Hwang, Dong Hyeon;Oh, Doo-Byoung;Kang, Hyun Ah;Kwon, Ohsuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.304-312
    • /
    • 2013
  • The thermotolerant methylotrophic yeast Hansenula polymorpha is attracting interest as a potential strain for the production of recombinant proteins and biofuels. However, only limited numbers of genome engineering tools are currently available for H. polymorpha. In the present study, we identified the HpPOL3 gene encoding the catalytic subunit of DNA polymerase ${\delta}$ of H. polymorpha and mutated the sequence encoding conserved amino acid residues that are important for its proofreading 3'${\rightarrow}$5' exonuclease activity. The resulting $HpPOL3^*$ gene encoding the error-prone proofreading-deficient DNA polymerase ${\delta}$ was cloned under a methanol oxidase promoter to construct the mutator plasmid pHIF8, which also contains additional elements for site-specific chromosomal integration, selection, and excision. In a H. polymorpha mutator strain chromosomally integrated with pHIF8, a $URA3^-$ mutant resistant to 5-fluoroorotic acid was generated at a 50-fold higher frequency than in the wild-type strain, due to the dominant negative expression of $HpPOL3^*$. Moreover, after obtaining the desired mutant, the mutator allele was readily removed from the chromosome by homologous recombination to avoid the uncontrolled accumulation of additional mutations. Our mutator system, which depends on the accumulation of random mutations that are incorporated during DNA replication, will be useful to generate strains with mutant phenotypes, especially those related to unknown or multiple genes on the chromosome.