• Title/Summary/Keyword: must cell

Search Result 679, Processing Time 0.039 seconds

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF

Antiangiogenic Activity of Coptis chinensis Franch. Water Extract in in vitro and ex vivo Angiogenesis Models (In vitro와 ex vivo 혈관신생 모델에서 황련 냉수추출물의 신생혈관 억제효과)

  • Kim, Eok-Cheon;Kim, Seo Ho;Lee, Jin-Ho;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.78-88
    • /
    • 2017
  • Angiogenesis, the formation of new blood vessels, plays an important role in tumor growth and metastasis; therefore, it has become an important target in cancer therapy. Novel anticancer pharmaceutical products that have relatively few side effects or are non-cytotoxic must be developed, and such products may be obtained from traditional herbal medicines. Coptis chinensis Franch. is an herb used in traditional medicine for the treatment of inflammatory diseases and diabetes. However, potential antiangiogenic effects of C. chinensis water extract (CCFWE) have not yet been studied. The purpose of this study was to determine the antiangiogenic effect of CCFWE in order to evaluate its potential for an anticancer drug. We found that the treatment with CCFWE inhibited the major steps of the angiogenesis process, such as the endothelial cell proliferation, migration, invasion, and capillary-like tube formation in response to vascular endothelial growth factor (VEGF), and also resulted in the growth inhibition of new blood vessels in an ex vivo rat aortic ring assay. We also observed that CCFWE treatment arrested the cell cycle at the G0/G1 phase, preventing the G0/G1 to S phase cell cycle progression in response to VEGF. In addition, the treatment reduced the VEGF-induced activation of matrix metalloproteinases 2 and 9. Taken together, these findings indicate that CCFWE should be considered a potential anticancer therapy against pathological conditions where angiogenesis is stimulated during tumor development.

Studies on the chlorella in Korea (한국 Chlorella에 대한 연구)

  • 이주식;심종호
    • Korean Journal of Microbiology
    • /
    • v.1 no.1
    • /
    • pp.38-44
    • /
    • 1963
  • According to the experiment on pure-isolation and the related contaminants of Chlorella, the phenomena of the ecological distributions of Chlorella in Korea have been manifested in several areas and also the aim that in going to do culture, biological and physiological study of Chlorella is carried out. Contaminants very oftenly occupied on the colony of the strains taken in order to fulfil pure-isolation of Chlorella, but in accordance with being piled up the minute research on this subject, I can obtain the desirable results as follows: 1. For the pure-isolation, the duration chose the time from May to September 1957 so that may easily isolate from contaminant water with utilizing the antibiotic substances. 2. To take long time, 36-48 hours until growth of nascent through the non-sporulated, it originates from the difference of the cultured media. In addition to the above mention, the mechanism of growth until nascent through the sporulated must not always require the ligh. However the supply of metabolic energy depend upon its nutritional conditions per phase. 3. The culture of Chlorella should be based on the lower culturing except adding especial conditions such as reagent concentration of media, artifical shake of media and other facts due to the natural conditions. And also these strains grew not only in distilled water but 2% NaCl solution without any abnormality in cell it self. I, therefore, guess it is possible to culture in sea-water under phasic environment. 4. In the experiment of ammonia detection, it is caused by the sampling surroundings to contain the minute quantity of ammonia in strain No. M 918; that is the place to be plenty of Carbohydrate on behalf of protein. 5. To compare the absorption curve of chlorophyll of higher plant with that of Chlorella, the absorption zone made mostly the Same ones each other but a little absorption grade dose not clearly appear. The colony which formed giant type grows with intensive colour and green band on surrounding of the colony and after that it was changed into all the green colour and developed up to end. 6. At first phase for a week, the development of Chlorella suspends the normal condition as in vivo but after a few days, the colour of chlorophyll gradually changed into blue-yellow which secrete the mucous substances on the agar media. The cell was flew out the contained substances itself on leaving the cell wall only, or the various micro-organism diffused on the outer-region of the cell.

  • PDF

PLEIOTROPHIN EFFECTS ON BINDING AND SUBSEQUENT OSTEOGENESIS OF HUMAN MESENCHYMAL STEM CELLS (Pleiotrophin이 골수 줄기 세포의 부착 및 골형성에 미치는 효과에 대한 연구)

  • Yoon, Jung-Ho;Eune, Jung-Ju;Jang, Hyon-Seok;Rim, Jae-Suk;Lee, Eui-Seok;Kim, Dae-Sung;Kwon, Jong-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.2
    • /
    • pp.111-117
    • /
    • 2006
  • An area of current research is investigating the app1ication of human mesenchymal stem cells or hMSCs as a cell-based regenerative therapy. In order to achieve effective bone regeneration, appropriate matrices functioning as cell-carriers must be identified and optimized in terms of function, efficacy and biocompatibility. Two methods of approaching optimization of matrices are to facilitate adhesion of the donor hMSCs and furthermore to facilitate recruitment of host progenitor cells to osteoblastic differentiation. Pleiotrophin is an extracellular matrix protein that was first identified in developing rat brains and believed to be associated with developing neuronal pathways. A recent publication by Imai and colleagues demonstrated that transgenic mice with upregulated pleiotrophin expression developed a greater volume of cortical as well as cancellous bone. The proposed mechanism of action of pleiotrophin is demonstrated here. Through either environmental stresses and/or intracellular regulation, there is an increase in pleiotrophin production. The pleiotrophin is released extracellularly into areas requiring bone deposition. A receptor-mediated process recruits host osteoprogenitor cells into these areas. Therefore, the aim of our study was to investigate the osteoconductive properties of pleiotrophin. We wanted to determine if pleiotrophin coating facilitates cellular adhesion and furthermore if this has any effect on hMSCs derived bone formation in an animal model. The results showed a dose dependent response of cellular adhesion in fibronectin samples, and cellular adhesion was facilitated with increasing pleiotrophin concentrations. Histologic findings taken after 5 weeks implantation in SCID mouse showed no presence of bone formation with only a dense fibrous connective tissue. Possible explanations for the results of the osteogenesis assay include inappropriate cell loading.

A STUDY ON THE RESPONSES OF OSTEOBLASTS TO VARIOUS SURFACE-TREATED TITANIUM

  • Lee Joung-Min;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.307-326
    • /
    • 2004
  • Statement of problem. The long-term success of implants is the development of a stable direct connection between bone and implant surface, which must be structural and functional. To improve a direct implant fixation to the bone, various strategies have been developed focusing on the surface of materials. Among them, altering the surface properties can modify cellular responses such as cell adhesion, cell motility and bone deposition. Purpose. This study was to evaluate the cellular behaviors on the surface-modified titanium by morphological observation, cellular proliferation and differentiation. Material and methods. Specimens were divided into five groups, depending on their surface treatment: electropolishing(EP) anoclizing(AN), machining(MA), blasting with hydroxyapatite particle(RBM) and electrical discharge machining(EDM). Physicochemical properties and microstructures of the specimens were examined and the responses of osteoblast-like cells were investigated. The microtopography of specimens was observed by scanning electron microscopy(SEM). Surface roughness was measured by a three-dimensional roughness measuring system. The microstructure was analyzed by X-ray diffractometer(XRD) and scanning auger electron microscopy(AES). To evaluate cellular responses to modified titanium surfaces, osteoblasts isolated from neonatal rat were cultured. The cellular morphology and total protein amounts of osteoblast-like cell were taken as the marker for cellular proliferation, while the expression of alkaline phosphatase was used as the early differentiation marker for osteoblast. In addition, the type I collagen production was determined to be a reliable indicator of bone matrix synthesis. Results. 1. Each prepared specimen showed specific microtopography at SEM examination. The RBM group had a rough and irregular pattern with reticulated appearance. The EDM-treated surface had evident cracks and was heterogeneous consisting of broad sheet or plate with smooth edges and clusters of small grains, deep pores or craters. 2. Surface roughness values were, from the lowest to the highest, electropolished group, anodized group, machined group, RBM group and EDM group. 3. All groups showed amorphous structures. Especially anodized group was found to have increased surface oxide thickness and EDM group had titaniumcarbide(TiC) structure. 4. Cells on electropolished, anodized and machined surfaces developed flattened cell shape and cells on RBM appeared spherical and EDM showed both. After 14 days, the cells cultured from all groups were formed to be confluent and exhibited multilayer proliferation, often overlapped or stratified. 5. Total protein amounts were formed to be quite similar among all the group at 48 hours. At 14 days, the electropolished group and the anodized group induced more total protein amount than the RBM group(P<.05). 6. There was no significant difference among five groups for alkaline phosphatase(ALP) activity at 48 hours. The AN group showed significantly higher ALP activity than any other groups at 14 days(P<.05). 7. All the groups showed similar collagen synthesis except the EDM group. The amount of collagen on the electropolished and anodized surfaces were higher than that on the EDM surface(P<.05).

Development trends of Solar cell technologies for Small satellite (소형위성용 태양전지 개발 동향 및 발전 방향)

  • Choi, Jun Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.310-316
    • /
    • 2021
  • Conventional satellites are generally large satellites that are multi-functional and have high performance. However, small satellites have been gradually drawing attention since the recent development of lightweight and integrated electric, electronic, and optical technologies. As the size and weight of a satellite decrease, the barrier to satellite development is becoming lower due to the cost of manufacture and cheaper launch. However, solar panels are essential for the power supply of satellites but have limitations in miniaturization and weight reduction because they require a large surface area to be efficiently exposed to sunlight. Space solar cells must be manufactured in consideration of various space environments such as spacecraft and environments with solar thermal temperatures. It is necessary to study structural materials for lightweight and high-efficiency solar cells by applying an unfolding mechanism that optimizes the surface-to-volume ratio. Currently, most products are developed and operated as solar cell panels for space applications with a triple-junction structure of InGaP/GaAs/Ge materials for high efficiency. Furthermore, multi-layered junctions have been studied for ultra-high-efficiency solar cells. Flexible thin-film solar cells and organic-inorganic hybrid solar cells are advantageous for material weight reduction and are attracting attention as next-generation solar cells for small satellites.

Mitochondrially Targeted Bcl-2 and Bcl-XL Chimeras Elicit Different Apoptotic Responses

  • Liu, Sen;Pereira, Natasha Ann;Teo, Joong Jiat;Miller, Peter;Shah, Priya;Song, Zhiwei
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.378-387
    • /
    • 2007
  • The Bcl-2 family of proteins interacts at the mitochondria to regulate apoptosis. However, the anti-apoptotic Bcl-2 and $Bcl-X_L$ are not completely localized to the mitochondria. In an attempt to generate Bcl-2 and $Bcl-X_L$ chimeras that are constitutively localized to the mitochondria, we substituted their C-terminal transmembrane tail or both the C-terminal transmembrane tail and the adjacent loop with the equivalent regions from Bak or Bax mutant (BaxS184V) as these regions determine the mitochondrial localization of Bak and Bax. The effects of these substitutions on subcellular localization and their activities were assessed following expression in HeLa and CHO K1 cells. The substitution of the C-terminal tail or the C-terminal tail and the adjacent loop of Bcl-2 with the equivalent regions from Bak or the Bax mutant resulted in its association with the mitochondria. This change in subcellular localization of Bcl-2 chimeras triggered cells to undergo apoptotic-like cell death. The localization of this Bcl-2 chimera to the mitochondria may be associated with the disruption of mitochondrial membrane potential. Unlike Bcl-2, the loop structure adjacent to the C-terminal tail in $Bcl-X_L$ is crucial for its localization. To localize the $Bcl-X_L$ chimeras to the mitochondria, the loop structure next to the C-terminal tail in $Bcl-X_L$ protein must remain intact and cannot be substituted by the loop from Bax or Bak. The chimeric $Bcl-X_L$ with both its C-terminal tail and the loop structure replaced by the equivalent regions of Bak or Bax mutant localized throughout the entire cytosol. The $Bcl-X_L$ chimeras that are targeted to the mitochondria and the wild type $Bcl-X_L$ provided same protection against cell death under several death inducing conditions.

Analysis of opposing histone modifications H3K4me3 and H3K27me3 reveals candidate diagnostic biomarkers for TNBC and gene set prediction combination

  • Park, Hyoung-Min;Kim, HuiSu;Lee, Kang-Hoon;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.266-271
    • /
    • 2020
  • Breast cancer encompasses a major portion of human cancers and must be carefully monitored for appropriate diagnoses and treatments. Among the many types of breast cancers, triple negative breast cancer (TNBC) has the worst prognosis and the least cases reported. To gain a better understanding and a more decisive precursor for TNBC, two major histone modifications, an activating modification H3K4me3 and a repressive modification H3K27me3, were analyzed using data from normal breast cell lines against TNBC cell lines. The combination of these two histone markers on the gene promoter regions showed a great correlation with gene expression. A list of signature genes was defined as active (highly enriched H3K4me3), including NOVA1, NAT8L, and MMP16, and repressive genes (highly enriched H3K27me3), IRX2 and ADRB2, according to the distribution of these histone modifications on the promoter regions. To further enhance the investigation, potential candidates were also compared with other types of breast cancer to identify signs specific to TNBC. RNA-seq data was implemented to confirm and verify gene regulation governed by the histone modifications. Combinations of the biomarkers based on H3K4me3 and H3K27me3 showed the diagnostic value AUC 93.28% with P-value of 1.16e-226. The results of this study suggest that histone modification analysis of opposing histone modifications may be valuable toward developing biomarkers and targets for TNBC.

A New Approach for Practical Classification of Herbicide and for Effective Use by Two-dimensional Ordination Analysis (Two-Dimensional Ordination 분석법에 의한 제초제살초 Spectrum 분류와 효과적인 사용법)

  • Kim Soon Chul
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.147-159
    • /
    • 1983
  • In general, herbicides have been classified according to selectivity, mobility. time of application, methods of application, mode of action and chemical property and structure. However, there was no generally accepted classification system for practical use in the field. The primary processes affected by the majority of herbicides are the growth process through cell elongation and/or cell division, the photosynthetic process specifically the light reaction, the oxidative phosphorylation and the integrity of the membrane systems. The usual approach in the study of the mechanism by which herbicides kill or inhibit the growth of plants is to initially determine the morphological phototoxicity systems, The mechanism by which a herbicide kills a plant or suppresses its development is actually the resultant effect of primary and secondary(or side) effects. In most instances, the death of the plant is due to the secondary effects. To induce the desired response, a herbicide must be able to gain entry into the plants and once inside, to be transported within the plant to its site(s) of activity in concentrations great enough. Obstacles to the entry and movement of herbicides in plants are generally classified by leaf and soil obstacles, translocation obstacles and biochemical obstacles, and these obstacles are also strongly influenced by plant species and by environmental factors such as light, temperature, rainfall and relative humidity. And hence, in most instances, results obtained from laboratory or greenhous vary from those of field experiment. Author attempted to classify herbicides from the field experiment using the two-dimensional ordination analysis to obtain practical information for selecting effective herbicides or to choose effective herbicide combinations for increasing herbicidal efficacy or reducing the chemical cost. Based on this two-dimensional diagram, desired herbicides or combinations were selected and further investigated for the interaction effects whether these combinations are synergistic, additive or antagonistic. From the results, it was concluded that these new approach could possibly be give more comprehensive informations about effective use of herbicide than any other systems.

  • PDF

Effect of Semen Sources and Culture System on Efficiency of IVP Embryo Production and Cryopreservation (정액종류 및 배양조건에 따른 체외수정란의 생산 및 동결보존의 효율에 미치는 영향)

  • 공일근;이상인
    • Journal of Embryo Transfer
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • The objective of this study was to optimize the selection of sperm sources, optimal culture systems and vitrification method depends on sperm sources. The oocytes were inseminated with either KPN 105, 114, 191, SNU 101, 102, 103 or epididymis and then embryos inseminated were cultured in oviductal cell co-culture or HECM-6 as defined me dium. The blastocysts produced were pooled according to sperm sources as KPN, SNU or epididymis and then vitrified by OPP vitrification method. The results obtained were as follows: 1. The cleavage(86.2 or 84.7%) and development rates to blastocyst (30.6 or 32.0%) were not significantly different between oviductal cell co-culture or HECM-6 culture systems(P<0.05). 2. To determine the optimal sperm sources for using IVF in this system, cleavage rates in KPN 191 and SNU 101 (74.2, 55.8%) were significantly lower rather than those in KPN 105, 114, SNU 102, 103 or epididymis (86.7, 85.1, 89.8, 85.5 or 81.2%), but development rates to blastocyst in KPN 114, SNU 103 or epididymis sperm (30.0, 33.0 or 28.6%) were significantly higher rater than those in KPN 105, 191, SNU 101, 102(21.4, 15.4, 14.9 or 25.4%), respectively (P<0.05). 3. The blastocysts produced were pooled according to sperm sources as KPN, SNU or epididymis and then vitrified by OPP vitrification method. The survival rates were not significantly different among sperm sources (89.6%: 43/48 ; 90.1%: 46/51 ; 83.3% : 20/24). These results obtained indicate that the defined medium, HECM-6, could be use to produce of IVP bovine embryos. Since the frozen semen must be required to maintain of unvariation data in IVP embryo production system, KPN 114 and SNU 103 produced in our laboratory were useful for this purpose. The blastocysts produced by different sperm sources as KPN, SNU or epididymis were vitrified by OPP vitrification method and survived very high rates. The OPP vitrification method could be susceptibility to use of IVP bovine blastocyst embryos.

  • PDF