• Title/Summary/Keyword: muscular forces

Search Result 29, Processing Time 0.029 seconds

Modelling of Ergonomics and Muscular Comfort

  • Eberhard Haug;Alain Tramecon;J. C. Allain;Park, Hyung-Yun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.982-994
    • /
    • 2001
  • Commercially available software packages permit to position human models of various geometries in practical scenarios while respecting the anatomical constraints of the skeletal joints and of the bulk of the bodies. Beyond such features, the PAM-Comfort(sup)TM software has been conceived to provide direct access to the muscular forces needed by humans to perform physical actions where muscle force is required. The PAM-Comfort(sup)TM human models are made of multi-body linked anatomical skeletons, equipped with finite elements of the relevant skeletal muscles. The hyper-static problem of determination of muscle forces is solved by optimisation technique. Voluntary stiffening of muscles can be added to the basic contraction levels needed to perform a specific task. The calculated muscle forces obey Hills model. The model and software have been applied in several interesting scenarios of various fields of application, such as car industry, handling of equipment and sports activities.

  • PDF

A constant tendon moment arms finger model in the sagittal plane

  • Lee, K.H.
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.46-53
    • /
    • 1992
  • Finger movements in the sagittal plane mainly consist of flexion and extension about the metacarpophalangeal(MCP) and proximal interphalangeal(PIP) joints. A kinematic finger model was developed with the assumption of constant tendon moment arms. Equations of static equilibrium were derived for the finger model using the principle of virtual work. Equations of static equilibrium for the finger model were indeterminate since only three equations were available for five unknown variables(forces). The number of variables was reduced based on information on muscular activities in finger movements. Then the amounts of forces which muscles exerted to maintain static equilibrium against external loads were computed from the equilibrium equations. The muscular forces were expressed mathematically as functions of finger positions, tendon moment arms, lengths of phalanges, and the magnitude and direction of external load. The external finger strength were computed using the equations of muscular forces and anatomical data. Experiments were performed to measure finger strengths. Measurements were taken in combinations of four finger positions and four directions of force exertions. Validation of the finger models and of procedure to estimate finger strengths was done by comparing the results of computations and experiments. Significang differences were found between the predicted and measured finger strengths. However, the trends of finger strengths with respect to finger positions were similar inboth the predicted and measured. These findings indicate that the finger model and the procedure to predict finger strengths were correctly developed.

  • PDF

A nonlinear optimization model of lower extremity movement in seated foot operation (비선형 최적화기법을 이용한 하지근력 예측 인체공학 모형)

  • 황규성;정의승;이동춘
    • Journal of the Ergonomics Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.65-79
    • /
    • 1994
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. The model incorporated four rigid body segments with the twenty-four muscles to represent lower extremity. This study deals with quasi-static movement to investigate dymanic movement effect in seated foot operation. It is found that optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles and antagonistic muscles reasonably. So, the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles and the antagonistic muscle effects from the stabilization of the joint. For the model validation, three male subjects performen the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. For the selection of optimal seated posture, a physiological meaningful criterion for muscular load sharing developed.

  • PDF

Biomechanical investigation of arm position on deforming muscular forces in proximal humerus fractures

  • Christen E. Chalmers;David J. Wright;Nilay A. Patel;Hunter Hitchens;Michelle McGarry;Thay Q. Lee;John A. Scolaro
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.4
    • /
    • pp.282-287
    • /
    • 2022
  • Background: Muscular forces drive proximal humeral fracture deformity, yet it is unknown if arm position can help mitigate such forces. Our hypothesis was that glenohumeral abduction and humeral internal rotation decrease the pull of the supraspinatus and subscapularis muscles, minimizing varus fracture deformity. Methods: A medial wedge osteotomy was performed in eight cadaveric shoulders to simulate a two-part fracture. The specimens were tested on a custom shoulder testing system. Humeral head varus was measured following physiologic muscle loading at neutral and 20° humeral internal rotation at both 0° and 20° glenohumeral abduction. Results: There was a significant decrease in varus deformity caused by the subscapularis (p<0.05) at 20° abduction. Significantly increasing humeral internal rotation decreased varus deformity caused by the subscapularis (p<0.05) at both abduction angles and that caused by the supraspinatus (p<0.05) and infraspinatus (p<0.05) at 0° abduction only. Conclusions: Postoperative shoulder abduction and internal rotation can be protective against varus failure following proximal humeral fracture fixation as these positions decrease tension on the supraspinatus and subscapularis muscles. Use of a resting sling that places the shoulder in this position should be considered.

Association between muscular strengths and gait characteristics of elderly people aged 65 to 74 and 75 and above (전·후기 노인의 근력과 보행 특성의 관계)

  • Back, Chang-Yei;Joo, Ji-Yong;Kim, Young-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.415-422
    • /
    • 2020
  • This study investigates the relationship between muscular strengths and gait characteristics of the elderly. Totally, 107 subjects, aged 65 to 85 years, participated in this study. Researchers measured muscle strengths (grip force, toe grip force, gluteus medius, and gluteus maximus forces) and walking characteristics (walking speed, cadence, step length, single leg support, and double legs support). Dynamometers and inertial measurement unit-based shoe systems were used for measuring muscular strength and gait characteristics, respectively. No significant difference was observed in strengths and walking characteristics between the young elders (YE, 65-74 years) and the old elders (OE, 75-85 years). For each age, muscular strength significantly correlated with some gait parameters. Forces of gluteus medius and gluteus maximus muscles showed better significant correlations between some gait parameters for all age groups, as compared to grip force and toe grip force. Regression coefficients between walking speed and grip force did not vary with age. We conclude that muscular strengths in OE better explained the gait characteristics than in YE subjects. Even though grip strength is an easily measured variable for senior fitness test, forces of gluteus medius and gluteus maximus muscles are more meaningful for understanding the walking characteristics of elderly people.

앉은 자세에서의 페달설계를 위한 생체역학 모델의 개발

  • 황규성;최재호;정의승;이동춘
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.358-363
    • /
    • 1992
  • A two-dimensional static biomechanical model of lower extremity in the seated posture was developed to assess muscular activities of lower extremity required for a variety of foot pedal operations. Muscle forces of the model were predicted using the double linear optimization scheme. For the model validation, three subjects performed the experiments which measured EMG activities of six lower extremity muscles. Predicted muscle forces were compared with the corresponding rectified intergrated EMG amplitudes and it showed reasonable results.

  • PDF

The influence of disc wear on the behavior of the temporomandibular joint: a finite element analysis in a specific case

  • Duarte, Ricardo J.;Ramos, Antonio;Mesnard, Michel
    • Advances in biomechanics and applications
    • /
    • v.1 no.3
    • /
    • pp.159-167
    • /
    • 2014
  • The aim of this study was to evaluate the influence of disc thickness on the normal behavior of the temporomandibular joint. Based on a specific patient case, CT scan images showing accentuated wear in the right disc were reconstructed and the geometrical and finite element model of the temporomandibular joint structures (cranium, mandible, articular cartilages and articular discs) was developed. The loads applied in this study were referent to the five most relevant muscular forces acting on the temporomandibular joint during daily tasks such as talking or eating. We observed that the left side structures of the temporomandibular joint (cranium, mandible and articular disc) were the most affected as a consequence of the wear on the opposite articular disc (right side). From these results, it was possible to evaluate the differences in the two sides of the joint and understand how a damaged articular disc influences the behavior of this joint and the possible consequences that can arise without treatment.

A Biomechanical Model of Lower Extremity Movement in Seated Foot Operation

  • Kyu-Sung Hwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.60
    • /
    • pp.37-46
    • /
    • 2000
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. The model incorporated four rigid body segments with the twenty-four muscles to represent lower extremity This study deals with quasi-static movement to investigate dynamic movement effect in seated foot operation. It is found that optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles and antagonistic muscles reasonably. So, the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles and the antagonistic muscle effects from the stabilization of the joint. For the model validation, three male subjects performed the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. For the selection of optimal seated posture, a physiological meaningful criterion was developed for muscular load sharing developed. For exertion levels, the transition point of type F motor unit of each muscle is inferred by analyzing the electromyogram at the seated postures. Also, for predetermined seated foot operations exertion levels, the recruitment pattern is identified in the continuous exertion, by analyzing the electromyogram changes due to the accumulated muscle fatigue.

  • PDF

A biomechanical model of lower extremity for seated operators (착좌시 하지 동작의 생체역학적 모델)

  • 황규성;이동춘;최재호
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.81-92
    • /
    • 1992
  • A two-dimensional static biochemical model of lower extremity in the seated posture was developed to assess muscular activities of lower extremity required for a variety of foot pedal operations. We found that the double linear optimization method that has been used for modelling articulated body segments does no predict the forces generated by biarticular muscles reasonably, so the revised double linear optimization scheme was used to consider the synergistic effects of biarticular muscles in our model, assuming that the muscle forces are distributed proportionally based on their physiological cross sectional area. The model incorporated three rigid body se- gments with six muscles to represnet lower extremity. For the model validation, three male subjects performed the experiments in which EMG activities of six lower extremity muscles were measured. Predicted muscle forces were compare with the corresponding EMG amplitudes and it showed no statistical difference. The model being developed can be used to design and assess pedal and foot-related tool design.

  • PDF