• Title/Summary/Keyword: muscarinic signaling

검색결과 26건 처리시간 0.022초

Xylitol stimulates saliva secretion via muscarinic receptor signaling pathway

  • Park, Eunjoo;Na, Hee Sam;Jeong, Sunghee;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제44권2호
    • /
    • pp.62-70
    • /
    • 2019
  • Xylitol is well-known to have an anti-caries effect by inhibiting the replication of cariogenic bacteria. In addition, xylitol enhances saliva secretion. However, the precise molecular mechanism of xylitol on saliva secretion is yet to be elucidated. Thus, in this study, we aimed to investigate the stimulatory effect of xylitol on saliva secretion and to further evaluate the involvement of xylitol in muscarinic type 3 receptor (M3R) signaling. For determining these effects, we measured the saliva flow rate following xylitol treatment in healthy individuals and patients with dry mouth. We further tested the effects of xylitol on M3R signaling in human salivary gland (HSG) cells using real-time quantitative reverse-transcriptase polymerase chain reaction, immunoblotting, and immunostaining. Xylitol candy significantly increased the salivary flow rate and intracellular calcium release in HSG cells via the M3R signaling pathway. In addition, the expressions of M3R and aquaporin 5 were induced by xylitol treatment. Lastly, we investigated the distribution of M3R and aquaporin 5 in HSG cells. Xylitol was found to activate M3R, thereby inducing increases in $Ca^{2+}$ concentration. Stimulation of the muscarinic receptor induced by xylitol activated the internalization of M3R and subsequent trafficking of aquaporin 5. Taken together, these findings suggest a molecular mechanism for secretory effects of xylitol on salivary epithelial cells.

Homo- or Hetero-Dimerization of Muscarinic Receptor Subtypes is Not Mediated by Direct Protein-Protein Interaction Through Intracellular and Extracellular Regions

  • Kang, Yun-Kyung;Yoon, Tae-Sook;Lee, Kyung-Lim;Kim, Hwa-Jung
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.846-854
    • /
    • 2003
  • The oligomerization of G-proteincoupled receptors (GPCRs) has been shown to occur by various mechanisms, such as via disulfide covalent linkages, non covalent (ionic, hydrophobic) interactions of the N-terminal, and/or transmembrane and/or intracellular domains. Interactions between GPCRs could involve an association between identical proteins (homomers) or non-identical proteins (heteromers), or between two monomers (to form dimers) or multiple monomers (to form oligomers). It is believed that muscarinic receptors may also be arranged into dimeric or oigomeric complexes, but no systematic experimental evidence exists concerning the direct physical interaction between receptor proteins as its mechanism. We undertook this study to determine whether muscarinic receptors form homomers or a heteromers by direct protein-protein interaction within the same or within different subtypes using a yeast two-hybrid system. Intracellular loops (i1, i2 and i3) and the C-terminal cytoplasmic tails (C) of human muscarinic (Hm) receptor subtypes, Hm1, Hm2 and Hm3, were cloned into the vectors (pB42AD and pLexA) of a two-hybrid system and examined for heteromeric or homodimeric interactions between the cytoplasmic domains. No physical interaction was observed between the intracellular domains of any of the Hm/Hm receptor sets tested. The results of our study suggest that the Hm1, Hm2 and Hm3 receptors do not form dimers or oligomers by interacting directly through either the hydrophilic intracellular domains or the C-terminal tail domains. To further investigate extracellular domain interactions, the N-terminus (N) and extracellular loops (o1 and o2) were also cloned into the two-hybrid vectors. Interactions of Hm2N with Hm2N, Hm2o1, Hm2o2, Hm3N, Hm3o1 or Hm3o2 were examined. The N-terminal domain of Hm2 was found to have no direct interaction with any extracellular domain. From our results, we excluded the possibility of a direct interaction between the muscarinic receptor subtypes (Hm1, Hm2 and Hm3) as a mechanism for homo- or hetero-meric dimerization/oligomerization. On the other hand, it remains a possibility that interaction may occur indirectly or require proper conformation or subunit formation or hydrophobic region involvement.

기니픽 갑상선에서 Thyrotropin에 의한 thyroxine 유리에 대한 muscarinic 수용체 자극효과 (Effects of muscarinic receptor stimulation on the thyrotropin-induced thyroxine release in the guinea pig thyroid)

  • 김홍현;김진상
    • 대한수의학회지
    • /
    • 제39권1호
    • /
    • pp.55-61
    • /
    • 1999
  • The present experiments were performed to examine the effects of acetylcholine (ACh) and carbachol (CC) on thyroxine ($T_4$) release and any possible relation between inhibition of $T_4$ release and signaling pathway in guinea pig thyroids. The thyroids were incubated in the medium containing the test agents, samples of the medium were assayed for $T_4$ by EIA kits. ACh and CC inhibited the TSH-stimulated $T_4$ release. These inhibition were reversed by atropine, but not by d-tubocurarine. The inhibitory effects of ACh on $T_4$ release were prevented by $M_{1^-}$ and $M_{3^-}$muscarinic antagonists and its inhibition was also slightly reversed by $M_{2^-}$ and $M_{4^-}$muscarinic antagonists. R59022, like ACh and CC, also inhibited the TSH-stimulated $T_4$ release. This inhibition was reversed by protein kinase C inhibitor and $Ca^{2+}$ channel blocker. The present study suggests that cholinergic inhibition of $T_4$ release from thyroids can be induced mainly by activation of the $M_{1^-}$ or $M_{3^-}$ receptors and that it is mediated through the muscarinic receptorstimulated protein kinase C activation.

  • PDF

Direct Involvement of G Protein $\alpha_{q/11}$ Subunit in Regulation of Muscarinic Receptor-Mediated sAPP$\alpha$ Release

  • Kim Jin Hyoung;Kim Hwa-Jung
    • Archives of Pharmacal Research
    • /
    • 제28권11호
    • /
    • pp.1275-1281
    • /
    • 2005
  • The $G_{q/11}$ protein-coupled receptors, such as muscarinic (M1 & M3) receptors, have been shown to regulate the release of a soluble amyloid precursor protein (sAPP$\alpha$) produced from $\alpha$-secretase processing. However, there is no direct evidence for the precise characteristics of G proteins, and the signaling mechanism for the regulation of $G_{q/11}$ protein-coupled receptor mediated sAPP$\alpha$ release is not clearly understood. This study examined whether the muscarinic receptor-mediated release of sAPP$\alpha$ is directly regulated by $G\alpha_{q/11}$ proteins. The HEK293 cells were transiently cotransfected with muscarinic M3 receptors and a dominant-negative minigene construct of the G protein $\alpha$ subunit. The sAPP$\alpha$ release in the media was measured using an antibody specific for sAPP. The sAPP$\alpha$ release enhancement induced by muscarinic receptor stimulation was decreased by a $G_{q/11}$ minigene construct, whereas it was not blocked by a control minigene construct (the G$\alpha$ carboxy peptide in random order, G$\alpha_{q}$R) or $G\alpha_{j}$ constructs. This indicated a direct role of the $G\alpha_{q/11}$ protein in the regulation of muscarinic M3 receptor-mediated sAPP$\alpha$ release. We also investigated whether the transactivation of the epidermal growth factor receptor (EGFR) by a muscarinic agonist could regulate the sAPP$\alpha$ release in SH-SY5Y cells. Pretreatment of a specific EGFR kinase inhibitor, tyrophostin AG1478 (250 nM), blocked the EGF-stimulated sAPP$\alpha$ release, but did not block the oxoM­stimulated sAPP$\alpha$ release. This demonstrated that the transactivation of the EGFR by muscarinic receptor activation was not involved in the muscarinic receptor-mediated sAPP$\alpha$ release.

Functional Properties of Human Muscarinic Receptors Hm1, Hm2 and Hm3 Expressed in a Baculovirus/Sf9 Cell System

  • Woo, Hyun-Ae;Woo, Yae-Bong;Bae, Seung-Jin;Kim, Hwa-Jung
    • Biomolecules & Therapeutics
    • /
    • 제7권4호
    • /
    • pp.307-314
    • /
    • 1999
  • The human muscarinic acetylcholine receptor (mAChR) subtypes Hml, Hm2 and Hm3 have been expressed in insect cells (Spodoptera frugiperda, Sf9) using the baculovirus expression system. Expression of relevant DNA, transcript and receptor proteins was identified by PCR, Northern blotting and [$^{3}H$]QNB binding, respectively. As assessed by [$^{3}H$]QNB binding sites, yields of muscarinic receptors in membrane preparations in this study were as about 5-20 times high as those in mammalian cells reported in previous studies. The [$^{3}H$]QNB competition binding studies with well-known subtype-selective mAChR antagonists showed that the receptors expressed in Sf9 cells retain the pharmacological characteristics expected for the ml , m2 and m3 muscarinic receptors. The ml-selective antagonist, pirenzepine, displayed a considerably higher affinity for Hml by 110-fold and 35-fold than for Hm2 and Hm3, respectively, The m2-selective methoctramine displayed a significantly higher affinity for Hm2 than for Hml and Hm3 (10- and 26-fold, respectively). p-F-HHSiD exhibited high affinity for Hm3 that is not significantly different from those for Hml, but 66-fold higher than its affinity for Hm2. The functional coupling of the recombinant receptors to second messenger systems was also examined. While both Hml and Hm3 stimulated phosphoinositide hydrolysis upon activation by carba-chol, Hm2 produced no response. On the other hand, activation of mAChRs induced the inhibition of forsko-lin-stimulated cyclic AMP formation in Hm2-expressing cells, whereas the significant dose-dependent increase in or poor response on cyclic AMP formation were produced in Hml or Hm3-expressing cells, respectively. These results indicate the differential coupling of recombinant Hml, Hm2 and Hm3 receptors expressed in SF9 cells to intracellular signalling system.

  • PDF

m2 Muscarinic Receptors Stimulate Neuronal Nitric Oxide Synthase

  • Lee, Seok-Yong;Park, Sun-Hye;Cho, Tai-Soon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.208-208
    • /
    • 1996
  • In this work we investigated coupling of the m2 and m4 subtypes of muscarinic acetylcholine receptors expressed in chinese hamster ovary (CHO) cells to activation of neuronal nitric oxide synthase (nNOS). Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation of nitric oxide (NO) in CHO cells. The agonist carbachol induced marked time and concentration-dependent enhancement of the activity of nNOS at m2 receptors. In sharp contrast, the response in CHO cells transfected with the m4 receptor gene was similar in magnitude to that observed in non-transfected cells, suggesting lack of significant coupling of m4 muscarinic receptors to NO signaling. This novel observation of functional divergence of the two muscarinic receptor subtypes at the level of activation of nNOS is quite intriguing, in light of the currently accepted dogma that they belong to the same functional class. This functional selectivity was not due to differential effects on intracellular Ca$\^$2+/ concentration, since activation of both subtypes of muscarinic receptors produced a comparable, albeit quite small, Ca$\^$2+/ signal. Taken together, our present data strongly suggest that the generally assumed functional equivalence of m2 and m4 muscarinic receptors should be carefully reexamined. These data also suggest the presence of alternate mechanisms of activation of nNOS, which might be operative in the absence of large changes in the concentration of cellular Ca$\^$2+/. The latter mechanisms are expected to be activated by m2, but not m4 muscarinic receptors. Both sets of findings are quits important in regards to refining the functional classification of muscarinic receptor subtypes and the cellular mechanisms of activation of NOS.

  • PDF

Role of Homeostatic Changes in Salivary Gland Acinar Cells in Primary Sjögren's Syndrome: A Review

  • Jin-Seok Byun
    • Journal of Oral Medicine and Pain
    • /
    • 제48권2호
    • /
    • pp.39-44
    • /
    • 2023
  • Primary Sjögren's syndrome (pSS) is an autoimmune progressive disease characterized by dysfunction and inflammation of the salivary glands. The underlying mechanisms of salivary gland involvement in pSS remain unclear, and researchers have primarily focused on immunological phenomena, making it difficult to distinguish between the cause and effect of the disease. Consequently, our research aims to directly investigate changes in homeostasis occurring in acinar cells, specifically in the context of muscarinic signaling, mucins, aquaporins, and forkhead box protein O1, to elucidate the initial step of pSS. We compare the disease-related phenomena observed in salivary gland acinar cells in pSS with the overall process of salivary secretion.

Cloning and Characterization of Muscarinic Receptor Genes from the Nile Tilapia (Oreochromis niloticus)

  • Seo, Jung Soo;Kim, Moo-Sang;Park, Eun Mi;Ahn, Sang Jung;Kim, Na Young;Jung, Sung Hee;Kim, Jin Woo;Lee, Hyung Ho;Chung, Joon Ki
    • Molecules and Cells
    • /
    • 제27권3호
    • /
    • pp.383-390
    • /
    • 2009
  • To investigate the regulatory mechanism underlying the contractile response in the intestinal smooth muscle of the nile tilapia (Orechromis niloticus), we used pharmacologic and molecular approaches to identify the muscarinic subreceptors and the intracellular signaling pathways involved in this motility. Myography assays revealed that an M1- and M3-subtype selective antagonist, but not a M2-subtype selective antagonist, inhibited carbachol HCl (CCH)-induced intestinal smooth muscle contraction. In addition, a phospholipase C inhibitor, but not an adenylate cyclase inhibitor, blocked the contractile response to CCH. We also cloned five muscarinic genes (OnM2A, OnM2B, OnM3, OnM5A, and OnM5B) from the nile tilapia. In the phylogenetic analysis and sequence comparison to compare our putative gene products (OnMs) with the sequences obtained from the near complete teleost genomes, we unexpectedly found that the teleost fish have respectively two paralogous genes corresponding to each muscarinic subreceptor, and other teleost fish, except zebrafish, do not possess muscarinic subreceptor M1. In addition, the expression pattern of the nile tilapia muscarinic subreceptor transcripts during CCH-induced intestinal smooth muscle contraction in the proximal intestinal tissue was analyzed by real-time PCR surveys and it was demonstrated that CCH increased the OnMs mRNA expression rapidly and transiently.

Mutation of a Transposed Amino Acid Triplet Repeat Enhances Coupling of m1 Muscarinic Receptor to Activation of Phospholipase C

  • Lee, Seok-Yong;Cho, Tai-Soon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.206-206
    • /
    • 1996
  • The C-terminus ends of the second putative transmembrane domains of both m1 and m2 muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T), This triplet is repeated as LYT-LYT in m2 receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposed fashion (LYT-TYL) in the sequence of m1 receptors. In this work we employed site-directed mutagenesis to investigate the possible significance of this unique sequence diversity for determining the distinct differential drug-receptor interaction and cellular function at m1 muscarinic receptor. Mutation of the LYTTYL sequence of m1 receptors to the corresponding m2 receptor LYTLYT sequence, however, did not result in a significant change in the binding affinity of the agonist carbachol or in the affinity of the majority of a series of receptor antagonists which are able to discriminate between wild-type m1 and m2 receptors. Surprisingly, the LYTLYT ml receptor mutant demonstrated markedly enhanced coupling to activation of phospholipase C without a change in its coupling to increased cyclic AMP formation. There was also an enhanced receptor sensitivity in transducing elevation of intracellular Ca$\^$2+/. These changes were not due to alterations in the rate of receptor. desensitization or sequestration, On the other hand, the reverse LYTLYT-LYTTYL mutation in the m2 receptor did not alter its coupling to inhibition of adenylate cyclase, but slightly enhanced its coupling to stimulation of PI hydrolysis, Our data suggest that the LYTTYL/LYTLYT sequence difference between ml and n12 muscarinic receptors is not involved in determining receptor pharmacology. On the other hand, while these differences might play a role in the modulation of muscarinic receptor coupling to PI hydrolysis, they are not important for specifying coupling of various subtypes of muscarinic receptors to different cellular signaling pathways.

  • PDF