DOI QR코드

DOI QR Code

Cloning and Characterization of Muscarinic Receptor Genes from the Nile Tilapia (Oreochromis niloticus)

  • Seo, Jung Soo (Pathology Division, National Fisheries Research and Development Institute) ;
  • Kim, Moo-Sang (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Park, Eun Mi (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Ahn, Sang Jung (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Kim, Na Young (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Jung, Sung Hee (Pathology Division, National Fisheries Research and Development Institute) ;
  • Kim, Jin Woo (Pathology Division, National Fisheries Research and Development Institute) ;
  • Lee, Hyung Ho (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Chung, Joon Ki (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2008.09.04
  • Accepted : 2008.12.04
  • Published : 2009.03.31

Abstract

To investigate the regulatory mechanism underlying the contractile response in the intestinal smooth muscle of the nile tilapia (Orechromis niloticus), we used pharmacologic and molecular approaches to identify the muscarinic subreceptors and the intracellular signaling pathways involved in this motility. Myography assays revealed that an M1- and M3-subtype selective antagonist, but not a M2-subtype selective antagonist, inhibited carbachol HCl (CCH)-induced intestinal smooth muscle contraction. In addition, a phospholipase C inhibitor, but not an adenylate cyclase inhibitor, blocked the contractile response to CCH. We also cloned five muscarinic genes (OnM2A, OnM2B, OnM3, OnM5A, and OnM5B) from the nile tilapia. In the phylogenetic analysis and sequence comparison to compare our putative gene products (OnMs) with the sequences obtained from the near complete teleost genomes, we unexpectedly found that the teleost fish have respectively two paralogous genes corresponding to each muscarinic subreceptor, and other teleost fish, except zebrafish, do not possess muscarinic subreceptor M1. In addition, the expression pattern of the nile tilapia muscarinic subreceptor transcripts during CCH-induced intestinal smooth muscle contraction in the proximal intestinal tissue was analyzed by real-time PCR surveys and it was demonstrated that CCH increased the OnMs mRNA expression rapidly and transiently.

Keywords

Acknowledgement

Supported by : National Fisheries Research and Development Institute

References

  1. Aronsson, U., and Holmgren, S. (2000). Muscarinic M3-like receptors, cyclic AMP and L-type calcium channels are involved in the contractile response to cholinergic agents in gut smooth muscle of the rainbow trout Oncorhynchus mykiss. Fish Physiol. Biochem. 23, 353-361 https://doi.org/10.1023/A:1011107630078
  2. Baker, E.N., Kerkhof, C.J., and Sipkema, P. (1999). Signal transduction in spontaneous myogenic tone in isolated arterioles from rat skeletal muscle. Cardiovasc. Res. 41, 229-236 https://doi.org/10.1016/S0008-6363(98)00161-8
  3. Bonner, T.I., Young, A.C., Brann, M.R., and Buckley, N.J. (1988). Cloning and expression of the human and rat M5 muscarinic acetylcholine receptor genes. Neuron 1, 403-410 https://doi.org/10.1016/0896-6273(88)90190-0
  4. Burka, J.F., Briand, H.A., Wartman, C.A., Hogan, J.E., and Ireland, W.P. (1996). Effects of modulatory agents on neurally-mediated responses of trout intestinal smooth muscle in vitro. Fish Physiol. Biochem. 15, 95-104 https://doi.org/10.1007/BF01875589
  5. Burnstock, G. (1958). The effect of drugs on spontaneous motility and on response to stimulation of extrinsic nerves of the gut of a teleostean fish. Br. J. Pharmacol. 13, 216-226
  6. Bymaster, F.P., Mckinzie, D.L., Felder, C.C., and Wess, J. (2003). Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem. Res. 28, 437-442 https://doi.org/10.1023/A:1022844517200
  7. Chou, H., Ogawa, N., Asanuma, M., Hirata, H., Kondo, Y., and Mori, A. (1993). Rapid response of striatal muscarinic M1-receptor mRNA to muscarinic cholinergic agents in rat brain. Mol. Brain Res. 19, 211-214 https://doi.org/10.1016/0169-328X(93)90028-N
  8. Eglen, R.M. (2005). Muscarinic receptor subtype pharmacology and physiology. Prog. Med. Chem. 43, 105-136 https://doi.org/10.1016/S0079-6468(05)43004-0
  9. Eglen, R.M., and Nahorski, S.R. (2000). The muscarinicM5 receptor: a silent or emerging subtype? Br. J. Pharmacol. 130, 13-21 https://doi.org/10.1038/sj.bjp.0703276
  10. Ehlert, F.J., Ostrom, R.S., and Sawyer, G.W. (1997). Subtypes of the muscarinic receptor in smooth muscle. Life Sci. 61, 1729-1740 https://doi.org/10.1016/S0024-3205(97)00433-5
  11. Felder, C.C. (1995). Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J. 9, 619-625 https://doi.org/10.1096/fasebj.9.8.7768353
  12. Finn, R.N., and Kristoffersen, B.A. (2007). Vertebrate vitellogenin gene duplication in relation to the "3R Hypothesis": Correlation to the pelagic egg and the oceanic radiation of teleosts. PLoS One 2, e169 https://doi.org/10.1371/journal.pone.0000169
  13. Fraser, C.M., and Lee, N.H. (1995). Regulation of muscarinic receptor expression by changes in mRNA stability. Life Sci. 56, 899-906 https://doi.org/10.1016/0024-3205(95)00026-3
  14. Ganzinelli, S., Joensen, L., Borda, E., Bernabeo, G., and Sterin-Borda, L. (2007). Mechanisms involved in the regulation of mRNA for M2 muscarinic acetylcholine receptors and endothelial and neuronal NO synthases in rat atria. Br. J. Pharmacol. 151, 175-185 https://doi.org/10.1038/sj.bjp.0707180
  15. Giulietti, A., Oververgh, L., Valckx, D., Decallonne, B., Bouillon, R., and Mathieu, C. (2001). An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25, 386–401 https://doi.org/10.1006/meth.2001.1261
  16. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98
  17. Hsieh, D.J., and Liao, C.F. (2002). Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization expression patterns and roles in embryonic bradycardia. Br. J. Pharmacol. 307, 782-792
  18. Irwin, D.M. (2004). A second insulin gene in fish genomes, Gen. Comp. Endocrinol. 135, 150-158 https://doi.org/10.1016/j.ygcen.2003.08.004
  19. Kim, B.J., So, I., and Kim, K.W. (2006). Involvement of the phospholipase Cb1 pathway in desensitization of the carbacholactivated nonselective cationic current in murine gastric myocytes. Mol. Cells 22, 65-69
  20. Lippe, C., and Ardizzone, F. (1991). Actions of vasopressin and isoprenaline on the ionic transport across the isolated frog skin in the presence and the absence of adenyl cyclase inhibitors MDL 12330A and SQ22536. Comp. Biochem. Physiol. 99C`, 209-211
  21. Meyer, A., and Schartl, M. (1999). Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11, 699-704 https://doi.org/10.1016/S0955-0674(99)00039-3
  22. Nilsson, S., and Holmgren, S. (1993). Autonomic nerve funtions. In The physiology of fishes. D.H., Evans, ed., (Boca Raton, USA: CRC Press), pp. 279-313
  23. Page, R.D. (1996). TreeView: an application to display phylogenetic trees on personal computer. Comput. Appl. Biosci. 12, 357-358
  24. Peralta, E.G., Ashkenazi, A., Windlow, J.W., Smith, D.H., Ramachandran, J., and Capon, D.J. (1987). Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J. 6, 3923-3929
  25. Phatarpekar, P.V., Durdan, S.F., Copeland, C.M., Crittenden, E.L., Neece, J.D., and Garcia, D.M. (2004). Molecular and pharmacological characterization of muscarinic receptors in retinal pigment epithelium: role in light-adaptive pigment movements. J. Neurochem. 95, 1504-1520 https://doi.org/10.1111/j.1471-4159.2005.03512.x
  26. Ronquist, F., and Huelsenbeck, J.P. (2003). MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574 https://doi.org/10.1093/bioinformatics/btg180
  27. Swofford, D.L. (2000). Phylogenetic Analysis Using Parsimony and Other Methods (Software). Sinauer Associates, Sunderland, USA
  28. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  29. Tietje K.M., and Nathanson N.M. (1991). Embryonic chick heart expresses multiple muscarinic acetylcholine receptor subtypes. Isolation and characterization of a gene encoding a novel m2 muscarinic acetylcholine receptor with high affinity for pirenzepine. J. Biol. Chem. 266, 17382-17387
  30. Van de Peer, Y., Taylor, J.S., Joseph, J., and Meyer, A. (2002). Wanda: a database of duplicated fish genes. Nucleic Acids Res. 30, 109-112 https://doi.org/10.1093/nar/30.1.109
  31. Vandepoele, K., De Vos, W., Taylor, J.S., Meyer, A., and Van de Peer, Y. (2004). Major events in the genome evolution of vertebrates: paranome age and size differ considerably between rayfinned fishes and land vertebrates. Proc. Natl. Acad. Sci. USA 101, 1638-1643 https://doi.org/10.1073/pnas.0307968100
  32. Volff, J.-N. (2005). Genome evolution and biodiversity in teleost fish. Heredity 94, 280-294 https://doi.org/10.1038/sj.hdy.6800635
  33. Volff, J.-N., and Schartl, M. (2003). Evolution of signal transduction by gene and genome duplication in fish. J. Struct. Funct. Genomics 3, 139-150 https://doi.org/10.1023/A:1022678305005
  34. Wess, J. (1996). Molecular biology of muscarinic acetylcholine receptors. Crit. Rev. Neurobiol. 10, 69-99
  35. Yin, G.C., Gentle, A., and McBrien, N.A. (2004). Muscarinic antagonist control of myopia: a molecular search for the M1 receptor in chick. Mol. Vis. 10, 787-793
  36. Zhang, L., Horowitz, B., and Buxton, L.O. (1991). Muscarinic receptors in canine colonic circular smooth muscle. I. Coexistence of M2 and M3 subtypes. Mol. Pharmacol. 40, 943-951

Cited by

  1. Developmental expression of muscarinic receptors in the eyes of zebrafish vol.1405, pp.None, 2011, https://doi.org/10.1016/j.brainres.2011.06.016
  2. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a vol.4, pp.None, 2009, https://doi.org/10.7554/elife.08638
  3. Evolution of the Muscarinic Acetylcholine Receptors in Vertebrates vol.5, pp.5, 2018, https://doi.org/10.1523/eneuro.0340-18.2018
  4. Muscarinic acetylcholine receptor expression in brain and immune cells of Oreochromis niloticus vol.328, pp.None, 2009, https://doi.org/10.1016/j.jneuroim.2019.01.012