• Title/Summary/Keyword: murine macrophage RAW 264.7 cells

Search Result 263, Processing Time 0.028 seconds

Effect of Gagam-Danguieumja through Regulation of MAPK on LPS-Induced Inflammation in RAW 264.7 Cells (LPS로 유도된 RAW 264.7 cell의 염증반응에서 MAPK 조절에 의한 가감당귀음자(加減當歸飮子)의 항염증 효과)

  • Kim, Tae-Yeon
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.339-348
    • /
    • 2013
  • Objectives : Danguieumja is a traditional medicinal prescription to treat skin disease. It was commonly used for the treatment of itching, chronic urticaria and atopic dermatitis in Korea by the addition or omission of several herbs. This study investigated the anti-inflammatory potential of Gagam-Danguieumja (GDE) water extract. Methods : We examined the effects of GDE on the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) in a murine macrophage cell line, RAW 264.7 cells. Results : GDE inhibited production of NO in a dose dependent manner and also decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2). As a possible molecular mechanism of anti-inflammatory effect increased phosphorylation of mitogen-activating protein kinases (MAPK) by LPS were blocked by GDE treatment. Conclusions : These results suggest that GDE has an anti-inflammatory therapeutic potential through the inhibition of MAPK phosphorylation, thereby decreasing the expression of pro-inflammatory genes.

Anti-Inflammatory Effects of Rice Bran Ethanol Extract in Murine Macrophage RAW 264.7 Cells (미강에탄올추출물의 RAW264.7 세포에서 항염증효과)

  • Park, Jeong-Suk;Kim, Mi-Hye
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.456-461
    • /
    • 2011
  • The aim of the present study is to investigate the anti-inflammatory effect of a Rice Bran Ethanol Extract (RBE). Inflammation, such as a bacterial infection in vivo metabolites, such as external stimuli or internal stimuli to the defense mechanisms of the biological tissue a variety of intracellular regulatory factors deulin inflammatory TNF-${\alpha}$, IL-$1{\beta}$, IL-6, IL-8, such as proinflammatory cytokines, prostagrandin, lysosomal enzyme, free radicals are involved in a variety of mediators. The present study was designed to determine the effect of the RBE on pro-inflammatory factors such as NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 in lipopolysaccharide (LPS) - stimulated RAW264.7 macrophages cells. The cell toxicity was determined by MTS assay. To evaluate of anti-inflammatory effect of RBE, amount of NO was measured using the NO detection kit and the iNOS expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR). And proinflammatory cytokines were measured by ELISA kit. As a result, the RBE reduced NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 production without cytotoxicity. Our results suggest that the RBE may have an anti-inflammatory property through suppressing inflammatory mediator productions and appears to be useful as an anti-inflammatory material.

The cytokine-inducing activities of surface components of the periodontopathogenic bacterium Porphyromonas gingivalis (Porphyromonas gingivalis의 각종 표면성분이 싸이토카인 형성에 미치는 영향)

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.799-811
    • /
    • 2005
  • This study was carried out to examine the potency of the three surface compo- nents from Porphyromonas gingivalis to stimulate the murine macrophage cell line RAW264.7 to synthesize the pro-inflammatory cytokine tumor necrosis factor alpha($TNF-{\alpha}$) and nitric oxide (NO). Lipopolysaccharide(LPS). lipid A-associated proteins(LAP) and saline-extractable surface -associated material(SAM) were isolated from P. gingivalis 381. $TNF-{\alpha}$ release into culture supernatants was determined by two-site ELISA. NO production was assayed by measuring the accumulation of nitrite in culture supernatants. Western blot analysis of iNOS and analysis of reverse transcription(RT)-PCR products were carried out. The surface components extracted from this bacterium were almost equally potent in stimulating release of $TNF-{\alpha}$ and NO by RAW264.7 cells. $TNF-{\alpha}$ that was being measured immunologically was due to activation of $TNF-{\alpha}$ gene transcription. The present study clearly shows that P. gingivalis surface components fully induced iNOS expression in RAW264.7 cells in the absence of other stimuli. The ability of P. gingivalis surface components to promote the production of $TNF-{\alpha}$ and NO may be important in the pathogenesis of inflammatory periodontal disease.

Taxifolin Inhibited the Nitric Oxide Production and Expression of Pro-inflammatory Cytokine mRNA in Lipopolysaccharide-stimulated RAW264.7 Cells

  • Rhee, Man-Hee;Endale, Mehari;Kamruzzaman, SM;Lee, Whi-Min;Park, Hwa-Jin;Yoo, Myung-Jo;Cho, Jae-Youl
    • Biomedical Science Letters
    • /
    • v.14 no.3
    • /
    • pp.147-155
    • /
    • 2008
  • In previous works, we found that solvent extract of Opuntia humifusa Raf., a member of the lactaceae family, displayed potent anti-oxidative and anti-inflammatory activities. Thus, all solvent fractions, except for the water layer, showed potent scavenging effects. According to activity-guided fractionation, one of active radical scavenging principles in the ethyl acetate fraction was found to be taxifolin. In this study, we investigated whether taxifolin showed anti-oxidative activity. In addition, taxifolin modulated nitric oxide (NO) release and the expression of pro-inflammatory cytokine mRNA such as interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and TNF-${\alpha}$. Taxifolin showed potent anti-oxidant activity with the $IC_{50}\;of\;8.5{\pm}1.4\;and\;9.3{\pm}1.0{\mu}M$ using xanthine/xanthine oxidase (XO) assay and 2,2-Diphenyl-lpicrylhydrazyl radical (DPPH) assay, respectively. We next determined the role of taxifolin on the immunomodulating activity using murine macrophage cell line RAW264.7 cells. Taxifolin dose-dependently inhibited NO production in lipopolysaccharide (LPS)-activated RAW264.7. It also significantly blocked the expression of inducible NO synthase (iNOS) mRNA in the LPS-stimulated RAW264.7 cells. In addition, taxifolin potently suppressed the expression of IL-$1{\beta}$, IL-6 and GM-CSF mRNA in LPS-activated RAW264.7 cells, but not that of TNF-${\alpha}$ Moreover, taxifolin significantly inhibited the transcriptional activity of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein -1 (AP-1). These results suggest that taxifolin may downregulate inflammatory iNOS, IL-$1{\beta}$, IL-6 and GM-CSF gene expressions through inhibition of NF-K and AP-1 activation in LPS-stimulated RAW264.7 cells.

  • PDF

Comparison of Cytokine and Nitric Oxide Induction in Murine Macrophages between Whole Cell and Enzymatically Digested Bifidobacterium sp. Obtained from Monogastric Animals

  • Kim, Dong-Woon;Cho, Sung-Back;Lee, Hyun-Jeong;Chung, Wan-Tae;Kim, Kyoung-Hoon;HwangBo, Jong;Nam, In-Sik;Cho, Yong-Il;Yang, Mhan-Pyo;Chung, Il-Byung
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.305-310
    • /
    • 2007
  • The principal objective of this study was to compare the effects of whole and hydrolyzed cells (bifidobacteria) treated with gastrointestinal digestive enzymes on the activation of cloned macrophages. Seven different strains of Bifidobacterium obtained from swine, chickens, and rats, were digested with pepsin followed by pancreatin and the precipitate (insoluble fraction) and supernatant (soluble fraction) obtained via centrifugation. The RAW 264.7 murine macrophages were incubated with either whole cells, the precipitate, or supernatant at various concentrations. Pronounced increases in the levels of nitric oxide (NO), interleukin $(IL)-1{\beta}$, IL-6, IL-12, and tumor necrosis factor $(TNF)-{\alpha}$ were observed in the whole cells and precipitates, but these effects were less profound in the supernatants. The precipitates also evidenced a slight, but significant, inductive activity for NO and all tested cytokines, with the exception of $(TNF)-{\alpha}$ in the macrophage model as compared with the whole cells. By way of contrast, $(TNF)-{\alpha}$ production when cultured with whole cells (100 ng/ml) resulted in marked increases as compared with what was observed with the precipitates. The results of this study indicated, for the first time, that digested Bifidobacterium sp. can induce the production of NO and several cytokines in RAW 264.7 murine macrophage cells. In the current study, it was demonstrated that Bifidobacterium strains treated with digestive enzymes, as compared with whole cells, are capable of stimulating the induction of macrophage mediators, which reflects that they may be able to modulate the gastrointestinal immune functions of the host.

Evaluation of Antibacterial and Therapeutic Effects of a Sodium salts Mixture against Salmonella typhimurium in Murine Salmonellosis (나트륨 염 복합조성물의 마우스 살모넬라증에 대한 항균 및 치료효과)

  • Lee, Yeo-Eun;Cha, Chun-Nam;Park, Eun-Kee;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.222-226
    • /
    • 2011
  • Salmonellosis is a major bacterial zoonosis that causes self-limited enteritis to fatal infection in animals and food-borne infection and typhoid fever in humans. Multidrug-resistant strains of Salmonella spp. has increased over the last several decades and recently causes more serious problems in public health. The present study was investigated bacteriocidal effects of sodium chlorate, sodium azide, sodium cyanide, and sodium salts mixture containing sodium chlorate, sodium azide, and sodium cyanide on infection with S. typhimurium in macrophage RAW 264.7 cells, and antibacterial effects of sodium salts mixture for murine salmonellosis. In infection assay of S. typhimurium in RAW 264.7 cells, bacterial survival rates within macrophage in all treated groups was significantly reduced comparing to that of the control group with the passage of incubation time. Administration of sodium salts mixture showed a therapeutic effect for S. typhimurium infected ICR mice. The mortality of mice treated with sodium salts mixture was 70% until 12 days, while that of control mice was 100% until 9 days after S. typhimurium infection. The results of this study strongly indicate that sodium salts mixture has a potency treatment for murine salmonellosis.

Anti-inflammatory Mechanism of Seaweeds in Murine Macrophage

  • Pan, Cheol-Ho;Kim, Eun-Sun;Um, Byung-Hun;Lee, Jae-Kwon
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.813-817
    • /
    • 2009
  • The effect of 4 seaweed extracts (Desmarestia viridis, Dictyopteris divaricata, Scytosiphon lomentaria, and Ishige okamurae) on pro-inflammatory mediators as well as nuclear factor $(NF)-{\kappa}B$ in the stimulated Raw 264.7 cells was investigated. They reduced iNOS and interlukin $(IL)-1{\beta}$ expressions at transcription level. Of those, 3 extracts (D. divaricata, I. okamurae, and S. lomentaria) inhibited the COX-2 expression at translation level. $I{\kappa}B-{\alpha}$ degradation was inhibited by D. divaricata and S. lomentaria extracts. Therefore, we concluded that the extracts from D. divaricata and S. lomentaria could inhibit the activation of murine macrophage through the blocking of $NF-{\kappa}B$ activation.

Modulatory Effects of Chrysanyhemi Flos Pharmacopuncture on Nitric-oxide (NO) Production in Murin Macrophagy Cells

  • Shin, Hwa-Young;Lee, Hyun-Jong;Lee, Yun-Kyu;Lim, Seong-Chul;Kim, Jae-Soo
    • Journal of Pharmacopuncture
    • /
    • v.15 no.1
    • /
    • pp.29-33
    • /
    • 2012
  • Objectives: Much evidence exists that herbs have effective immunomodulatory activities. Chrysanthemi Flos (CF) is effective in clearing heat, reducing inflammation, dropping blood pressure and treating headache and is used as a pharmaceutical raw material for an immune enhancer. The purpose of this study was to investigate the modulatory effect of Chrysanthemi Flos pharmacopuncture on nitric-oxide (NO) production in activating macrophages. Methods: After a murine macrophage cell line, RAW 264.7, was cultured in the presence of lipopolysaccharide (LPS), immune-modulating abilities of CF were evaluated by using NO, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-${\alpha}$) production and phagocytic activity of macrophages. Results: CF enhanced the activities of macrophages by increasing the phagocytic activity and decreasing NO production. Especially, both LPS and CF, 200 ${\mu}g/ml$, treatment could significantly reduce the NO production, but did not change the production of IL-6 and TNF-${\alpha}$. Conclusion: The results of this study indicate that CF may be of immunomodulatory value, especially for adverse diseases due to increased NO production. It may have potential for use as immunoenhancing pharmacopuncture.