본 연구에서는 1995년부터 1월에서 2015년 10월까지의 5,323개 일별자료로 다변량 GARCH BEKK모형을 이용하여 금리, 환율, 주가 상호간 충격전이효과를 분석하였다. 전체표본기간에서의 변동성 충격전이를 분석한 결과로는 우선 대칭모형상으로 금리변동의 충격은 주가에만 충격을 주었고 환율변동의 충격은 다른 두 변수들에 별다른 영향을 미치지 못하였는데 주가변동은 금리와 환율 모두에 유의미한 충격을 주는 것이 확인되었다. 비대칭모형상으로는 금리의 상승충격은 환율에만, 환율의 상승충격은 금리에만 상호간 유의미한 영향을 미쳤고 주가의 하락충격은 환율에만 유의미한 영향을 미치는 것으로 나타났다. 외환위기국면 소표본기간에서는 비대칭모형에서 금리의 상승충격이 환율과 주가에 영향을 미쳤고 주가의 하락충격은 환율에만 영향을 주는 것으로 나타났다. 또한 글로벌 금융위기국면 소표본기간의 비대칭모형에서는 주가의 하락충격만이 금리에 영향을 주는 것으로 나타났다. 이를 종합하면 한국의 주식시장 변동충격은 나머지 두 변수에 유의미하게 영향을 미쳤고 금리의 충격은 시기별로 주가와 환율에 영향을 미쳤으나 환율의 충격은 전체적으로 그리 크지 않게 나타남으로써 주식시장의 안정화 유도책이 시장변수의 충격을 완화시키기 위한 선결과제임이 입증되었다.
본 연구의 목적은 2007년~2010년 유로 도입 이후 금융위기 및 그에 따른 EU 부채위기까지의 기간 내에 미국, 유럽 및 BRIC 금융시장 간의 선형과 비선형 인과관계의 존재를 통해 글로벌 전이효과를 조사하는데 있다. 금융위기로 인한 글로벌 전이효과가 잘 설명되어 있지만, 미국, 유럽 및 BRIC 주식시장 간의 변동성 전이효과의 특성 뿐만 아니라 전달 메커니즘은 체계적으로 조사되지 않았다. 동적 선형 및 비선형 인과관계를 조사하기 위해 단계적인 필터링 방법론이 도입되었는데, 이는 벡터자기회귀모형과 다변량 GARCH 모형을 포함한다. 본 논문의 표본은 유로 이후 기간을 포함하고 또한 2007년 금융위기, 2008년 글로벌 금융위기, 2010년 유로존 부채위기도 포함한다. 본 연구의 실증결과는 BRIC 주식시장의 효율성에 많은 함의를 가질 수 있는데 시장의 예측가능성에 영향을 미칠 뿐만 아니라 시장의 금융통합의 과정을 수량화하기 위해서 미래의 연구에 유용할 수 있다. 미국, 유럽 및 BRIC 간의 상호 의존성이 감지되면 금융시장 규제, 헤징 및 거래 전략에 대한 중요한 함의를 나타낼 수 있다. 또한 결과는 BRIC이 미국발 서브프라임 금융위기 이후 국제적으로 통합되고 있고 전이효과가 더욱 구체화 되어 현저하게 나타나고 있다는 것을 보여준다. 더욱이, 탈동조화 견해를 지지하는 일관된 증거가 전혀 없다. 일부 비선형 인과관계는 조사기간 동안 필터링 후에도 지속된다. 비록 꼬리분포 의존성과 고적률이 나머지 상호 의존성의 유의한 요소일 수 있을지라도, 이것은 비선형 인과관계가 단순한 변동성 효과에 의해 대체로 설명될 수 있다.
본 논문은 우리나라 주식시장과 외환시장의 기대 수익률과 조건부 변동성간의 시계열적 관계를 2요인 자본자산가격결정모형(two-factor ICAPM)을 이용하여 실증 분석하였다. 주가와 환율의 조건부 분산은 GARCH 모형과 비대칭성을 반영한 GJR(1993) 모형으로 추정하였으며, 주가와 환율과의 조건부 공분산은 Bollerslev(1990)의 일정 상관관계(CCC) 모형과 Engle(2002)의 동태적 조건부상관관계(DCC) 모형을 이용하여 추정하였다. 실증 분석모형은 MGARCH-M 모형을 사용하였으며, 추정방법은 준최우추정법(QMLE)을 사용하였다. 실증 분석결과 외환위기 이후에 주식시장의 기대 수익률은 주가의 분산에 대해, 그리고 환율과의 공분산에 대해 유의한 음(-)의 관계를 갖는 것으로 나타났다. 그러나 외환시장에서 기대 수익률은 조건부 분산과 조건부 공분산에 대해 유의하지 않은 것으로 나타났다. 조건부 분산의 추정에서는 GJR 모형이 GARCH 모형에 비해 더 적합한 것으로 나타났다. 그리고 DCC 모형이 CCC 모형에 비해 설명력이 더 높은 것으로 나타났다. 본 논문의 분석결과는 주식시장에서 환율 변동이 위험 요인으로 작용하고 있기 때문에 포트폴리오 구성이나 위험 관리 등에서 환율 변동을 고려할 필요가 있고, 변수들간의 상관관계는 시변하는 모형을 사용할 필요가 있음을 시사한다.
금융기관의 위험관리를 위한 중요한 도구로서 현재 VaR가 널리 사용되고 있다. 본 논문에서는 코퓰러 함수들을 이용하여 극단치이론과 GARCH 모형을 결합한 일변량분포로부터 구축한 다변량분포들을 바탕으로 코스피, 다우존스, 상하이 그리고 니케이 지수들로 구성된 포트폴리오의 VaR 추정과 그 성과에 관해 논의하였다. 사후검증 결과 전체적으로 볼 때 가우시안, t, 클레이톤, 프랭크 코퓰러를 사용한 t-분포의 오차항을 가진 변동성 모형들이 포트폴리오 VaR의 측정에 적합한 모형들로 나타났으며, 특히 프랭크 코퓰러의 경우에 가장 우수한 성과를 나타내었다.
The Journal of Asian Finance, Economics and Business
/
제8권9호
/
pp.143-154
/
2021
This study aims to explore the dynamic conditional correlation (DCC) between ten Asian stock indexes, the US stock index, and Bitcoin by using the dynamic conditional correlation model. The time span of the daily data is between January 2015 to May 2021, the total observation is 1,116. DCC(1,1)-EGARCH(1,1) with multivariate t and normal distributions for the DCC and EGARCH models, respectively, outperforms other models by the goodness of fit values. Except for Bitcoin, we discovered that the majority of the securities' volatilities have a very high volatility persistence. Furthermore, the negative shocks/news have more impact on the volatilities than positive shocks/news in most of the cases, except the stock index of China and Bitcoin. Most of the correlation pairs exhibit higher correlation during the COVID-19 pandemic compared to the pre-COVID-19, except Hong Kong-The US and Malaysia-Indonesia. Moreover, the correlation between Asian stock indexes during the COVID-19 pandemic is statistically higher than the pre-COVID-19 pandemic. However, there are a few instances where the Hong Kong stock index and a few countries are identical. The result of correlation size shows the connectedness between Asian stock markets, which are well-connected within the region, especially with South Korea, Singapore, and Hong Kong.
본 연구는 글로벌 경제통합화를 통한 인도의 주식시장과 다른 주식시장의 변동성간에 연관성을 파악하고자 하였다. 본 연구의 결과, 첫째, 분산비검정에서 모든 기간의 주식시장은 자기상관이 존재하지 않았고 또한 고전적 RS모형에서 모든 기간이 자기상관이 존재하지 않았으나, 수정된 RS모형에서도 거의 모든 기간에서 장기기억이 존재하였다. 둘째, 단위근검정에서 모든 기간이 단위근이 존재하지 않아 시계열이 안정적이고, 모든 수정$R^2$는 높은 설명력을 나타냈다. 또한 ARFIMA모형에서 모두 정상적 조건을 만족하고 모든 시계열이 장기기억을 나타내었다. 셋째, VAR과 다변량 비대칭 BEKK모형에서 글로벌 금융위기전의 경우, 조건부 평균식에서 영국과 대만의 자국시장이 강하고, 일방향으로 일본에서 인도로, 대만에서 중국(한국, 미국)으로, 미국(일본)에서 영국으로 강한 조건부 평균전이효과가 존재하였다. 조건부 분산식에서 GARCH는 시장자체의 ARCH계수의 결과와 동일한 방향의 강한 조건부 변동성전이효과를 보여주었다. 세 자국시장에서 비대칭효과가 존재하며, 시장간 일방향의 비대칭효과가 존재하였다. 넷째, 글로벌 금융위기후의 경우, 조건부 평균식에서 대만의 자국시장만이 강하게 영향을 나타내고, 일방향으로 인도에서 미국으로, 대만에서 일본으로, 한국에서 독일로 강한 조건부 평균전이효과가 존재하였다. 조건부 분산식에서는 위기전의 결과와 동일한 강한 조건부 변동성전이효과가 존재하였고 영국의 자국시장에서 비대칭효과가 존재하며, 대만에서 독일로 일방향의 비대칭효과가 존재하였다. 다섯째, 우도비검정에서는 다른 검정결과와는 다르게 모든 기간에서 인도는 타국의 주식시장에 영향을 미치지 않고 동시에 타국의 주식시장에 의해 영향을 받지 않았다. 따라서 본 연구는 글로벌 경제통합화를 통한 인도와 다른 주식시장의 변동성간에 연관성을 파악함으로써 타국의 주식시장에서 인도로의 수익률(변동성)전이효과와 타국의 주식시장간 일(양)방향의 비대칭적 반응을 관찰함으로써 타국의 주식시장간의 여러 인과관계를 확인하였다.
본 연구에서는 딥러닝 기반의 팜유(Crude Palm Oil: CPO) 가격 예측 방법론을 개발하였다. 팜유는 그 생산 수율과 경제적 효율성으로 인해 다양한 산업에서 중요한 자원으로 활용되고 있으며, 이로 인해 팜유 가격 변동성에 대한 산업계의 관심이 증가하고 있다. 따라서, 팜유 가격 예측을 위한 연구가 활발히 진행되고 있으나, 많은 연구가 시계열 예측 기반으로 정확도에 한계점을 가지고 있다. 본 연구는 기존 방법론의 주요 한계인 정상성 부재 문제를 해결하기 위해 현재 가격 대비 미래 가격의 비율을 종속변수로 사용하는 새로운 모델을 제시한다. 이 접근법은 주식 가격 예측에서의 수익(return) 모델링에 착안하여 개발되었으며, 단순 가격 예측보다 더 높은 성능을 나타낸다. 또한, 다변량 시계열 예측에서 중요한 요소인 독립변수의 지연 값(lag)을 고려하여, 불필요한 잡음을 제거하고 예측 모델의 안정성을 높이는 방법론을 채택했다. 이 연구는 팜유 가격 예측의 정확도를 향상시키는데 중요한 기여를 하며, 시계열 데이터가 중요한 다른 경제적 예측 문제에도 적용 가능한 접근법을 제시한다는 점에서 산업계에 큰 의미가 있다.
최근 주식의 수익률과 거래량을 설명하는 주요 요인으로서 투자자의 관심도와 주식 관련 정보 전파의 영향력이 부각되고 있다. 또한 인공지능과 같은 혁신 신기술을 개발보급하거나 활용하려는 기업의 경우 거시환경 및 시장 불확실성 때문에 기업의 미래 주식 수익률과 주식 변동성을 예측하기 어렵다는 문제를 가지고 있다. 이는 인공지능 활성화의 장애요인으로 인식되고 있다. 따라서 본 연구의 목적은 인공지능 관련 기술 키워드의 인터넷 검색량을 투자자의 관심 척도로 사용하여, 기업의 주가 변동성을 예측하는 기계학습 모형을 제안하는 것이다. 이를 위해 심층신경망 LSTM(Long Short-Term Memory)과 벡터자기회귀(Vector Autoregression)를 통해 주식시장을 예측하고, 기술의 사회적 수용 단계에 따라 키워드 검색량을 활용한 주가예측 성능 비교를 통해 기업의 투자수익 예측이나 투자자들의 투자전략 의사결정을 지원하는 주가 예측 모형을 구축하였다. 또한 인공지능 기술의 세부 하위 기술에 대한 분석도 실시하여 기술 수용 단계에 따른 세부 기술 키워드 검색량의 변화를 살펴보고 세부기술에 대한 관심도가 주식시장 예측에 미치는 영향을 살펴보았다. 이를 위해 본 연구에서는 인공지능, 딥러닝, 머신러닝 키워드를 선정하여, 2015년 1월 1일부터 2019년 12월 31일까지 5년간의 인터넷 주별 검색량 데이터와 코스닥 상장 기업의 주가 및 거래량 데이터를 수집하여 분석에 활용하였다. 분석 결과 인공지능 기술에 대한 키워드 검색량은 사회적 수용 단계가 진행될수록 증가하는 것으로 나타났고, 기술 키워드를 기반으로 주가예측을 하였을 경우 인식(Awareness)단계에서 가장 높은 정확도를 보였으며, 키워드별로 가장 좋은 예측 성능을 보이는 수용 단계가 다르게 나타남을 확인하였다. 따라서 기술 키워드를 활용한 주가 예측 모델 구축을 위해서는 해당 기술의 하위 기술 분류를 고려할 필요가 있다. 본 연구의 결과는 혁신기술을 기반으로 기업의 투자수익률을 예측하기 위해서는 기술에 대한 대중의 관심이 급증하는 인식 단계를 포착하는 것이 중요하다는 점을 시사한다. 또한 최근 금융권에서 선보이고 있는 빅데이터 기반 로보어드바이저(Robo-advisor) 등 투자 의사 결정 지원 시스템 개발 시 기술의 사회적 수용도를 세분화하여 키워드 검색량 변화를 통해 예측 모델의 정확도를 개선할 수 있다는 점을 시사하고 있다.
오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.