• 제목/요약/키워드: multivariate statistics

검색결과 655건 처리시간 0.02초

Tests Based on Skewness and Kurtosis for Multivariate Normality

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • 제22권4호
    • /
    • pp.361-375
    • /
    • 2015
  • A measure of skewness and kurtosis is proposed to test multivariate normality. It is based on an empirical standardization using the scaled residuals of the observations. First, we consider the statistics that take the skewness or the kurtosis for each coordinate of the scaled residuals. The null distributions of the statistics converge very slowly to the asymptotic distributions; therefore, we apply a transformation of the skewness or the kurtosis to univariate normality for each coordinate. Size and power are investigated through simulation; consequently, the null distributions of the statistics from the transformed ones are quite well approximated to asymptotic distributions. A simulation study also shows that the combined statistics of skewness and kurtosis have moderate sensitivity of all alternatives under study, and they might be candidates for an omnibus test.

A rolling analysis on the prediction of value at risk with multivariate GARCH and copula

  • Bai, Yang;Dang, Yibo;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • 제25권6호
    • /
    • pp.605-618
    • /
    • 2018
  • Risk management has been a crucial part of the daily operations of the financial industry over the past two decades. Value at Risk (VaR), a quantitative measure introduced by JP Morgan in 1995, is the most popular and simplest quantitative measure of risk. VaR has been widely applied to the risk evaluation over all types of financial activities, including portfolio management and asset allocation. This paper uses the implementations of multivariate GARCH models and copula methods to illustrate the performance of a one-day-ahead VaR prediction modeling process for high-dimensional portfolios. Many factors, such as the interaction among included assets, are included in the modeling process. Additionally, empirical data analyses and backtesting results are demonstrated through a rolling analysis, which help capture the instability of parameter estimates. We find that our way of modeling is relatively robust and flexible.

DEPENDENCE IN M A MODELS WITH STOCHASTIC PROCESSES

  • KIM, TAE-SUNG;BAEK, JONG-IL
    • 호남수학학술지
    • /
    • 제15권1호
    • /
    • pp.129-136
    • /
    • 1993
  • In this paper we present of a class infinite M A (moving-average) sequences of multivariate random vectors. We use the theory of positive dependence to show that in a variety of cases the classes of M A sequences are associated. We then apply the association to establish some probability bounds and moment inequalities for multivariate processes.

  • PDF

Change points detection for nonstationary multivariate time series

  • Yeonjoo Park;Hyeongjun Im;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • 제30권4호
    • /
    • pp.369-388
    • /
    • 2023
  • In this paper, we develop the two-step procedure that detects and estimates the position of structural changes for multivariate nonstationary time series, either on mean parameters or second-order structures. We first investigate the presence of mean structural change by monitoring data through the aggregated cumulative sum (CUSUM) type statistic, a sequential procedure identifying the likely position of the change point on its trend. If no mean change point is detected, the proposed method proceeds to scan the second-order structural change by modeling the multivariate nonstationary time series with a multivariate locally stationary Wavelet process, allowing the time-localized auto-correlation and cross-dependence. Under this framework, the estimated dynamic spectral matrices derived from the local wavelet periodogram capture the time-evolving scale-specific auto- and cross-dependence features of data. We then monitor the change point from the lower-dimensional approximated space of the spectral matrices over time by applying the dynamic principal component analysis. Different from existing methods requiring prior information on the type of changes between mean and covariance structures as an input for the implementation, the proposed algorithm provides the output indicating the type of change and the estimated location of its occurrence. The performance of the proposed method is demonstrated in simulations and the analysis of two real finance datasets.

다변량 지수평활모형을 이용한 환율 분석 (Multivariate exponential smoothing models with application to exchange rates)

  • 이연하;성병찬
    • 응용통계연구
    • /
    • 제33권3호
    • /
    • pp.257-267
    • /
    • 2020
  • 본 논문은 단변량 지수평활법의 확장된 형태인 다변량 지수평활법을 소개하고 다변량 시계열 분석에 활용한다. 다변량 지수평활법은 한 개의 오차를 기반으로 하는 상태공간모형을 이용하여 추정의 편리성을 제고하며, 다변량 시계열간의 잠재적인 상호연관성을 활용하여 적합도 및 예측력을 향상시킨다. 다변량 지수평활법의 성능을 평가하기 위하여 월별 원/달러 및 원/파운드 환율자료를 분석하고 예측한다. 대안 모형의 예측 결과와 비교하여 다변량 지수평활법의 우수성을 확인한다.

Cumulative Sum Control Charts for Simultaneously Monitoring Means and Variances of Multiple Quality Variables

  • Chang, Duk-Joon;Heo, Sunyeong
    • 통합자연과학논문집
    • /
    • 제5권4호
    • /
    • pp.246-252
    • /
    • 2012
  • Multivariate cumulative sum (CUSUM) control charts for simultaneously monitoring both means and variances under multivariate normal process are investigated. Performances of multivariate CUSUM schemes are evaluated for matched fixed sampling interval (FSI) and variable sampling interval (VSI) features in terms of average time to signal (ATS), average number of samples to signal (ANSS). Multivariate Shewhart charts are also considered to compare the properties of multivariate CUSUM charts. Numerical results show that presented CUSUM charts are more efficient than the corresponding Shewhart chart for small or moderate shifts and VSI feature with two sampling intervals is more efficient than FSI feature. When small changes in the production process have occurred, CUSUM chart with small reference values will be recommended in terms of the time to signal.

Multivariate EWMA control charts for monitoring the variance-covariance matrix

  • Jeong, Jeong-Im;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.807-814
    • /
    • 2012
  • We know that the exponentially weighted moving average (EWMA) control charts are sensitive to detecting relatively small shifts. Multivariate EWMA control charts are considered for monitoring of variance-covariance matrix when the distribution of process variables is multivariate normal. The performances of the proposed EWMA control charts are evaluated in term of average run length (ARL). The performance is investigated in three types of shifts in the variance-covariance matrix, that is, the variances, covariances, and variances and covariances are changed respectively. Numerical results show that all multivariate EWMA control charts considered in this paper are effective in detecting several kinds of shifts in the variance-covariance matrix.

Multivariate Shewhart control charts for monitoring the variance-covariance matrix

  • Jeong, Jeong-Im;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권3호
    • /
    • pp.617-626
    • /
    • 2012
  • Multivariate Shewhart control charts are considered for the simultaneous monitoring the variance-covariance matrix when the joint distribution of process variables is multivariate normal. The performances of the multivariate Shewhart control charts based on control statistic proposed by Hotelling (1947) are evaluated in term of average run length (ARL) for 2 or 4 correlated variables, 2 or 4 samples at each sampling point. The performance is investigated in three cases, that is, the variances, covariances, and variances and covariances are changed respectively.

다변량 왜정규분포 기반 이차형식의 분포함수에 대한 안장점근사 (Saddlepoint approximation to the distribution function of quadratic forms based on multivariate skew-normal distribution)

  • 나종화
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.571-579
    • /
    • 2016
  • 이차형식 통계량의 분포함수에 대한 연구는 주로 다변량 정규분포의 가정하에서 진행되어 왔다. 최근 다변량 정규분포를 포함하는 다변량 왜정규분포에 대한 연구가 활발하다. 본 논문에서는 다변량 왜정규분포의 가정하에서 이차형식 통계량의 분포함수에 대한 근사를 다루었다. 근사의 방법으로는 소표본에서도 정확도가 뛰어난 근사법으로 알려진 안장점근사를 사용하였으며, 모의실험을 통해 그 정도를 확인하였다.

On The Generation of Multivariate Multinomial Random Numbers

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제7권1호
    • /
    • pp.105-112
    • /
    • 1996
  • Softwares including random number generation are abundant in modern informative society. But it's hard to get directly multivariate multinomial random numbers from existing softwares. Multivariate multinomial random numbers are greatly used in social and medical sciences. In this paper, we show that desired multivariate multinomial random numbers can be easily generated by the aids of existing random number generating software. Some characteristics of multivariate multinomial distribution are surveyd. Measures of association for the generated random numbers were computed and compared with population ones via simulation study.

  • PDF