• Title/Summary/Keyword: multivariable system

Search Result 255, Processing Time 0.027 seconds

A Robust Global Exponential Stabilization of Uncertain Affine MIMO Nonlinear Systems with Mismatched Uncertainties by Multivariable Sliding Mode Control (다변수 슬라이딩 모드 제어에 의한 부정합조건 불확실성을 갖는 다입출력 비선형 시스템의 강인그로벌 지수 안정화)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1754-1760
    • /
    • 2011
  • In this paper, a systematic design of a robust nonlinear multivariable variable structure controller based on state dependent nonlinear form is presented for the control of MIMO uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After a MIMO uncertain affine nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the linear sliding surface is applied. A corresponding diagonalized control input is proposed to satisfy the closed loop global exponential stability and the existence condition of the sliding mode on the linear sliding surface, which will be investigated in Theorem 1. Through a design example and simulation study, the usefulness of the proposed controller is verified.

Optimal Multivariable $H_{\infty}$ Control System Design and Nonlinear Simulation (최적 다변수 $H_{\infty}$제어 시스템 설계 및 비선형 시뮬레이션)

  • Hwang, H.J.;Kim, D.W.;Do, D.H.;Choi, J.H.;Cho, W.R.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.1002-1004
    • /
    • 1999
  • The aim of this paper is to suggest a design method of the optimal multivariable $H_{\infty}$ control system using genetic algorithm(GA). This $H_{\infty}$ control system is designed by applying GA to the optimal determination of weighting functions and design parameter ${\gamma}$ that are given by Glover-Doyle algorithm which can design $H_{\infty}$ controller in the state space. The effectiveness of this $H_{\infty}$ control system is verified by nonlinear simulation.

  • PDF

Observer for multiple serial sampling systems (다중시리얼 샘플링 계의 제어를 위한 관측기의 계발)

  • 최연옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.305-310
    • /
    • 1991
  • In industrial multivariable plants, it is often the case that the plant outputs are detected in a similar components not simultaneously but serially. In this paper, the problem of estimating the state vector of the plant based on the data obtained from such a detecting scheme is considered, and a special type of observer (referred to as a "multiple serial-sampling" type observer) which renews its internal states whenever a new group of data is obtained is proposed. It is proved that such an observer can be constructed for almost every sampling period if the plant is observable as a continuous-time multivariable system, and that the poles of the closed-loop system using the serial-sampling type observer consist of the poles of the observer and those of the state feedback system. The behaviors of the observer and the closed-loop system are studied by simulation. The results of simulation indicate that a multiple serial-sampling type observer can estimate the state of the plant more accurately than the ordinary type observers and improve the closed-loop performance, especially, in the existence of dectecting noise.ing noise.

  • PDF

Self-Tuning Control of Multivariable System (다변수 시스템의 자기동조제어)

  • Bae, Jong-Il;Lee, Dong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.592-594
    • /
    • 1998
  • In the single-input and single-output system, the parameter of plant is scalar polynomial, but in the multiple input and multiple output, it accompanies, being matrix polynomial, the consideration of observable conrolability index or problems of non-commutation in matrix polynomial as well as degree, and it is more complex to deal with. Therefore, it is thought that a full reserach on the single-input and single-output system is not made. This reserach propose that problems of minimum variance self-tuning regulator of multivariable system and pole placement self-tuning regulator.

  • PDF

Application of decoupling control method to the multivariable generating system (다변수 발전설비 모델에 대한 비간섭 제어기법 적용 연구)

  • 홍석교;김동화
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.2
    • /
    • pp.43-50
    • /
    • 1992
  • In this paper, application of decoupling control method of multivariable system by state feedback to turbo-generating system with 2-input and 2-output is studied. The results of simulation shows tat turbo-generating system is canonically decoupled, and can be controlled against the change of load or frequency by feedback gain.

  • PDF

Design of Robust Linear Multivariable Optimal Model Following Servo System Incorporating Feedforward Compensator (피이드포워드 보상기를 갖는 강인한 선형 다변수 최적 모델 추종 서보계의 구성에 관한 연구)

  • Hwang, C.S.;Kim, C.T;Kim, D.W.;Kim, M.S.;Lee, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.338-340
    • /
    • 1993
  • In this paper, the method for designing a robust linear multivariable model following servo system is proposed. This model following servo system for the (n)th order reference input and the (n)th order disturbance is treated, and is designed so that the (n)th order response of the plant should be kept close to the (n)th order response of the given model by LQ(Linear Quadratic) optimal regulator approach. It is proved that the characteristics of the model following servo system is robust in the presence of the disturbances and the parameter perturbations of the plant dynamics.

  • PDF

$H_2$ controller Design of Decoupled Multivariable Feedback Control Systems ($H_2$ 제어 기법을 이용한 Decoupling 제어기 설계)

  • Choi, Goon-Ho;Cho, Yong-Suk;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.460-462
    • /
    • 1998
  • In this study, we deal with a multivariable system which its input and output are coupled. This study presents a method for designing a controller which allows a coupled system to be transformed to a decoupled system in a standard model adopting 2DOF controller. And Wiener-Hopf($H_2$) approach is used so that the designed controller can minimize given cost function.

  • PDF

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

The Design of a Robust Linear Time-invariant Feedback Compensator Guaranteeing Uniform Ultimate Boundedness for Uncertain Multivariable Systems (Uniform ultimate boundedness를 보장하는 선형 시블변 되먹임 보상기 설계)

  • Choi, Han-Ho;Yoo, Dong-Sang;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.678-681
    • /
    • 1991
  • In this paper, we propose a robust linear time-invariant feedback compensator design methodology for multivariable system which have both matched and mismatched uncertainties. In order to attack the problem of designing robust compensators guaranteeing uniform ultimate boundedness of every closed-loop system response within an arbitrarily small ball centered at the zero state based solely on the knowledge of the upper norm-bounds of uncertainties, we use an approach based upon the comparison theorem which is an effective approach in studying augmented feedback control systems with both mismatched and matched uncertainties. Through the approach, we draw some sufficient conditions for robust stability, and we give a simple example.

  • PDF