• Title/Summary/Keyword: multiuser systems

Search Result 204, Processing Time 0.025 seconds

Blind Adaptive Multiuser Detection for the MC-CDMA Systems Using Orthogonalized Subspace Tracking

  • Ali, Imran;Kim, Doug-Nyun;Lim, Jong-Soo
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • In this paper, we study the performance of subspace-based multiuser detection techniques for multicarrier code-division multiple access (MC-CDMA) systems. We propose an improvement in the PASTd algorithm by cascading it with the classical Gram-Schmidt procedure to orthonormalize the eigenvectors after their sequential extraction. The tracking of signal subspace using this algorithm, which we call OPASTd, has a faster convergence as the eigenvectors are orthonormalized at each discrete time sample. This improved PASTd algorithm is then used to implement the subspace blind adaptive multiuser detection for MC-CDMA. We also show that, for multiuser detection, the complexity of the proposed scheme is lower than that of many other orthogonalization schemes found in the literature. Extensive simulation results are presented and discussed to demonstrate the performance of the proposed scheme.

  • PDF

Application of Genetic Algorithm for Large-Scale Multiuser MIMO Detection with Non-Gaussian Noise

  • Ran, Rong
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 2022
  • Based on experimental measurements conducted on many different practical wireless communication systems, ambient noise has been shown to be decidedly non-Gaussian owing to impulsive phenomena. However, most multiuser detection techniques proposed thus far have considered Gaussian noise only. They may therefore suffer from a considerable performance loss in the presence of impulsive ambient noise. In this paper, we consider a large-scale multiuser multiple-input multiple-output system in the presence of non-Gaussian noise and propose a genetic algorithm (GA) based detector for large-dimensional multiuser signal detection. The proposed algorithm is more robust than linear multi-user detectors for non-Gaussian noise because it uses a multi-directional search to manipulate and maintain a population of potential solutions. Meanwhile, the proposed GA-based algorithm has a comparable complexity because it does not require any complicated computations (e.g., a matrix inverse or derivation). The simulation results show that the GA offers a performance gain over the linear minimum mean square error algorithm for both non-Gaussian and Gaussian noise.

Performance Analysis of Transmit Diversity in Multiuser Data Networks With Fading Correlation

  • Zhang, Kai;Niu, Zhisheng
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.444-450
    • /
    • 2008
  • This paper studies the performance of multiuser data networks with transmit diversity under correlated fading channels. Previous work shows that correlated fading reduces the link performance of multiple antenna systems, but how correlated fading affects the throughput of multiuser data networks is still unknown since the throughput depends not only on the link performance but also on the multiuser diversity. We derive the throughput of the multiuser data networks with various transmit diversity schemes under correlated fading channels. The impact of correlated fading on the throughput is investigated. Analytical and simulation results show that, although correlated fading is harmful for link performance, it increases the throughput of the multiuser data networks if the transmit scheme is appropriately selected.

Effect of Cooperative and Selection Relaying Schemes on Multiuser Diversity in Downlink Cellular Systems with Relays

  • Kang, Min-Suk;Jung, Bang-Chul;Sung, Dan-Keun
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.175-185
    • /
    • 2008
  • In this paper, we investigate the effect of cooperative and selection relaying schemes on multiuser diversity in downlink cellular systems with fixed relay stations (RSs). Each mobile station (MS) is either directly connected to a base station (BS) and/or connected to a relay station. We first derive closed-form solutions or upper-bound of the ergodic and outage capacities of four different downlink data relaying schemes: A direct scheme, a relay scheme, a selection scheme, and a cooperative scheme. The selection scheme selects the best access link between the BS and an MS. For all schemes, the capacity of the BS-RS link is assumed to be always larger than that of RS-MS link. Half-duplex channel use and repetition based relaying schemes are assumed for relaying operations. We also analyze the system capacity in a multiuser diversity environment in which a maximum signal-to-noise ratio (SNR) scheduler is used at a base station. The result shows that the selection scheme outperforms the other three schemes in terms of link ergodic capacity, link outage capacity, and system ergodic capacity. Furthermore, our results show that cooperative and selection diversity techniques limit the performance gain that could have been achieved by the multiuser diversity technique.

Error Control Coding and Space-Time MMSE Multiuser Detection in DS-CDMA Systems

  • Hamouda, Walaa;McLane, Peter J.
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.187-196
    • /
    • 2003
  • We consider the use of error control coding in direct sequence-code-division multiple access (OS-COMA) systems that employ multiuser detection (MUO) and space diversity. The relative performance gain between Reed-Solomon (RS) code and convolutional code (CC) is well known in [1] for the single user, additive white Gaussian noise (AWGN) channel. In this case, RS codes outperform CC's at high signal-to-noise ratios. We find that this is not the case for the multiuser interference channel mentioned above. For useful error rates, we find that soft-decision CC's to be uniformly better than RS codes when used with DS-COMA modulation in multiuser space-time channels. In our development, we use the Gaussian approximation on the interference to determine performance error bounds for systems with low number of users. Then, we check their accuracy in error rate estimation via system's simulation. These performance bounds will in turn allow us to consider a large number of users where we can estimate the gain in user-capacity due to channel coding. Lastly, the use of turbo codes is considered where it is shown that they offer a coding gain of 2.5 dB relative to soft-decision CC.

Multiuser Heterogeneous-SNR MIMO Systems

  • Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2607-2625
    • /
    • 2014
  • Previous studies on multiuser multiple-input multiple-output (MIMO) mostly assume a homogeneous signal-to-noise ratio (SNR), where each user has the same average SNR. However, real networks are more likely to feature heterogeneous SNRs (a random-valued average SNR). Motivated by this fact, we analyze a multiuser MIMO downlink with a zero-forcing (ZF) receiver in a heterogeneous SNR environment. A transmitter with Mantennas constructs M orthonormal beams and performs the SNR-based proportional fairness (S-PF) scheduling where data are transmitted to users each with the highest ratio of the SNR to the average SNR per beam. We develop a new analytical expression for the sum throughput of the multiuser MIMO system. Furthermore, simply modifying the expression provides the sum throughput for important special cases such as homogeneous SNR, max-rate scheduling, or high SNR. From the analysis, we obtain new insights (lemmas): i) S-PF scheduling maximizes the sum throughput in the homogeneous SNR and ii) under high SNR and a large number of users, S-PF scheduling yields the same multiuser diversity for both heterogeneous SNRs and homogeneous SNRs. Numerical simulation shows the interesting result that the sum throughput is not always proportional to M for a small number of users.

Mixed LMSF Blind Multiuser Detector for DS-CDMA Systems (DS-CDMA 시스템을 위한 혼합 LMSF 블라인드 다중 사용자 검출)

  • Park, Sung-Wook;Park, Jong-Wook
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.75-79
    • /
    • 2006
  • Blind techniques without the help of training sequences are able to detect the information signal which has the minimal information of desired user. In this paper, we proposed the blind multiuser detector using the hybrid cost function to cancel the multiple user interference in direct sequence code division multiple access systems. The cost function of proposed blind multiuser detector is the hybrid type which joints both least mean square(LMS) algorithm and least mean fourth(LMF) algorithm. We evaluate the bit error rate(BER) performance of proposed blind multiuser detector under additive white Gaussian noise channel. Simulation results show that the proposed blind detector has an about 3dB of signal to noise ratio more than blind minimum output energy(MOE) multiuser detector under existing active user 20.

Opportunistic Channel State Information Feedback for Eigen based Scheduling in Multiuser MIMO Systems (다중 사용자 다중 입출력 시스템에서 고유값 기반 스케줄링을 위한 선택적 채널 정보 피드백 기법)

  • Kim, Sung-Tae;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.6-12
    • /
    • 2009
  • In this paper, we propose the opportunistic channel state information feedback scheme for eigen based scheduling in multiuser MIMO systems. According to 3GPP SMC channel model, the system capacity of MU-MIMO systems is severly degraded, since the antennas are highly correlated in urban macro cell. Although the eigen based scheduling scheme mitigates the adverse effect of the antenna correlation, it achieves only small amount of the multiuser diversity gain. Since the opportunistic channel state information scheme can achieve sufficient multiuser diversity gain, the system capacity of MU-MIMO systems can be improved. The system capacity improvement is verified by the computer simulation results.

Partial IC Blind Multiuser Detection for CDMA Systems (CDMA 시스템을 위한 부분 간섭 제거 블라인드 다중 사용자 검출)

  • Woo Dae-Ho;Yoo Young-Gyo;Byun Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.184-190
    • /
    • 2006
  • In this paper, we propose the blind multiuser detector which is robust against the effects of near-far and multiuser interference. The proposed detector is composed of the partial IC(interference canceller) and the blind MOE(minimum output energy) multiuser detector. The partial IC partially eliminates interference components from the received signal then the output of partial IC is fed into the input of multiuser detector. Simulation results show that the proposed detector has the robust property but the performance of conventional MOE multiuser detector is rapidly degraded in case of existing both near far and multiuser. Thus, the proposed partial IC BMUD(blind multiuser detection) technique has better performance than the conventional MOE.

A Polynomial Complexity Optimal Multiuser Detection Algorithm Based on Monotonicity Properties

  • Quan, Qingyi
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.479-481
    • /
    • 2010
  • An optimal multiuser detection algorithm with a computational complexity of O(K log K) is proposed for the class of linear multiple-access systems which have constant cross-correlation values. Here the optimal multiuser detection is implemented by searching for a monotone sequence with maximum likelihood, under the ranking of sufficient statistics. The proposed algorithm is intuitive and concise. It is carried out in just two steps, and at each step only one kind of operation is performed. Also, the proposed algorithm can be extended to more complex systems having more than a single cross-correlation value.