• 제목/요약/키워드: multiscale dynamics

검색결과 56건 처리시간 0.025초

멀티스케일 해석을 통한 고분자 나노복합재의 계면 상 두께와 열탄성 물성 도출 (Characterization of Thickness and Thermoelastic Properties of Interphase in Polymer Nanocomposites using Multiscale Analysis)

  • 최준명;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제29권6호
    • /
    • pp.577-582
    • /
    • 2016
  • 본 논문에서는 나노입자가 삽입된 고분자 복합재에서 형성되는 계면 상의 정량적인 열탄성 물성을 계산과학적 접근으로 제시하였다. 균질해법이 적용된 유한요소모델과, 미시역학법에 의한 3상 복합재의 열탄성 이론, 그리고 분자동역학 전산모사법이 본 연구에 모두 적용되었고, 이를 유기적으로 연계한 멀티스케일 모델을 수립하였다. 특히, 제시한 유한요소모델과 분자동역학 기반의 나노복합재 모델로부터 각각의 인장하중에 따른 계면의 변형에너지 밀도를 도출, 이를 직접 비교하는 과정이 본 멀티스케일 해석 과정에 포함되었다. 이로써 주어진 온도 조건에 따른 나노입자 주변의 계면 상에 대한 탄성계수와 그 두께를 물리적 엄밀해로써 정량 도출할 수 있다. 이렇게 얻은 고분자 나노복합재의 연속체모델은 다시 미시역학 모델과 연계함으로써, 최종적으로는 광범위한 온도 조건에 의한 재료의 열탄성 거동 및 유리전이거동이 계면 상의 두께와 기계적 물성에 미치는 영향에 대해 분석, 평가하였다.

흡착공정 개발을 위한 다중규모 모사: 활성탄에서의 n-Hexane 흡착에 관한 사례연구 (Multiscale Simulation for Adsorption Process Development: A Case Study of n-Hexane Adsorption on Activated Carbon)

  • 손혜정;임영일;유경선
    • Korean Chemical Engineering Research
    • /
    • 제46권6호
    • /
    • pp.1087-1094
    • /
    • 2008
  • 본 연구는 활성탄을 사용한 n-hexane의 흡착공정에 있어서 분자수준에서 시작하여 공정단계에 이르는 다중규모 모사에 관하여 기술한다. 분자모사에서는 GCMC(Grand Canonical Monte Carlo) 방법을 이용하여 활성탄에서 n-hexane의 등온흡착식을 예측하고, 2차원 전산유체역학(CFD; Computational fluid dynamics) 모사를 통하여 흡착컬럼 내 유체흐름에 대한 수력학적 특성을 파악한다. 공정모사단계에서는 분자모사 및 유체역학 모사에서 각각 얻은 등온흡착식과 축방향 확산계수값을 이용하여 n-hexane의 용출곡선을 얻는다. 이러한 3단계 다중규모 모사기법을 활용하여 얻은 공정모사 결과는 펄스응답의 실험결과와 비교해볼 때, 온도와 유량변화에 따른 1차 모멘트(평균 체류시간)에 관하여 약 20% 미만의 오차범위에서 일치함을 확인할 수 있다. 이 결과로부터 분자수준에서 시작하는 다중규모 모사는 필요한 실험횟수를 줄이면서 흡착공정 개발을 가속화할 수 있는 가능성을 보여준다.

Heat resistance of carbon nanoonions by molecular dynamics simulation

  • Wang, Xianqiao;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • 제4권4호
    • /
    • pp.247-255
    • /
    • 2011
  • Understanding the structural stability of carbon nanostructure under heat treatment is critical for tailoring the thermal properties of carbon-based material at small length scales. We investigate the heat resistance of the single carbon nanoball ($C_{60}$) and carbon nanoonions ($C_{20}@C_{80}$, $C_{20}@C_{80}@C_{180}$, $C_{20}@C_{80}@C_{180}C_{320}$) by performing molecular dynamics simulations. An empirical many-body potential function, Tersoff potential, for carbon is employed to calculate the interaction force among carbon atoms. Simulation results shows that carbon nanoonions are less resistive against heat treatment than single carbon nanoballs. Single carbon nanoballs such $C_{60}$ can resist heat treatment up to 5600 K, however, carbon nanoonions break down after 5100 K. This intriguing result offers insights into understanding the thermal-mechanical coupling phenomena of nanodevices and the complex process of fullerenes' formation.

Molecular dynamics simulation of bulk silicon under strain

  • Zhao, H.;Aluru, N.R.
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.303-315
    • /
    • 2008
  • In this paper, thermodynamical properties of crystalline silicon under strain are calculated using classical molecular dynamics (MD) simulations based on the Tersoff interatomic potential. The Helmholtz free energy of the silicon crystal under strain is calculated by using the ensemble method developed by Frenkel and Ladd (1984). To account for quantum corrections under strain in the classical MD simulations, we propose an approach where the quantum corrections to the internal energy and the Helmholtz free energy are obtained by using the corresponding energy deviation between the classical and quantum harmonic oscillators. We calculate the variation of thermodynamic properties with temperature and strain and compare them with results obtained by using the quasi-harmonic model in the reciprocal space.

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.127-136
    • /
    • 2013
  • In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

Water Gas Shift Reaction을 위한 Multi-tubular Reactor 모델링 및 모사 (Rigorous Modeling and Simulation of Multi-tubular Reactor for Water Gas Shift Reaction)

  • 박준용;최영재;김기현;오민
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.931-937
    • /
    • 2008
  • 공정변수의 변화와 반응기의 성능을 정확하게 예측하기 위하여 Water Gas Shift Reaction(WGSR)을 위한 Multi-Tubular Reactor (MTR)의 상세 multiscale 모델링과 모사를 수행하였다. MTR은 비 균일 고체 촉매로 충진 된 4개의 관형반응기와 냉각을 위해 주변을 싸고 있는 shell side로 구성되어 있다. 유체의 흐름과 반응 kinetics가 반응기 성능에 큰 영향을 주고 있는 점을 고려할 때, Computational Fluid Dynamics (CFD)기법과 공정모델링 기법을 포함한 multiscale 방법론의 채택은 자연스럽고 필수 불가결한 일이다. $345^{\circ}C$로 관형반응기 부분으로 유입된 반응물은 반응의 결과 $390^{\circ}C$$45^{\circ}C$가량 온도가 증가하였으며, CO의 전환율은 0.89에 이르렀다. 쉘 사이드로 $190^{\circ}C$로 유입된 유체는 쉘 출구에서 $240^{\circ}C$로 약 $50^{\circ}C$ 가량의 온도 증가를 보였으며 이를 통하여 에너지 절감효과를 가져 올 수 있었으며 높은 전환율을 얻기 위해 반응기 부분의 온도를 적절히 제어할 수 있었다. 모사의 결과는 여러 문헌에 보고된 실험 결과와 매우 근접한 값을 나타내 본 연구를 통해 제시된 모델과 모사의 결과가 정확함을 알 수 있었다.

Kapitza 열저항이 존재하는 나노복합재의 열전도 특성 예측을 위한 순차적 멀티스케일 균질화 해석기법에 관한 연구 (A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance)

  • 신현성;양승화;유수영;장성민;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제25권4호
    • /
    • pp.315-321
    • /
    • 2012
  • 본 연구에서는 분자동역학 전산모사와 유한요소해석 기반의 균질화 기법을 통해 나노복합재의 열전도 특성을 정확하고 효율적으로 예측할 수 있는 순차적 멀티스케일 균질화 해석기법을 제안하였다. 나노입자의 크기효과가 나노복합재의 유효 열전도 특성에 미치는 영향을 조사하기 위해 크기가 다른 구형 나노입자가 첨가된 나노복합재의 열전도 계수를 분자동역학 전산모사를 통해 예측했고, 그 결과 나노입자의 크기가 작아질수록 계면에서의 Kapitza열저항에 의해 나노복합재의 열전도 계수가 점차 감소하는 것으로 나타났다. 이러한 나노입자의 크기효과를 균질화 해석모델을 통해 정확하게 묘사하기 위해 Kapitza 열저항에 의한 계면에서의 온도 불연속 구간과 고분자 기지가 높은 밀도를 가지며 흡착되는 유효계면을 추가적인 상으로 도입하여 나노복합재를 입자, Kapitza 계면, 유효계면, 기지로 구성된 4상의 연속체 구조로 모델링하였다. 이후 순차적 멀티스케일 균질화 해석기법을 통해 유효계면의 열전도 계수를 나노복합재의 열전도 계수로부터 역으로 예측했으며, 이를 입자의 반경에 대한 함수로 근사하였다. 근사 함수를 토대로 다양한 입자 체적분율과 반경에 대한 나노복합재의 유효 열전도 특성을 예측하였으며, 유효계면에 대한 매개변수 연구를 수행하였다.

Influence of indenter shape on nanoindentation: an atomistic study

  • Lai, Chia-Wei;Chen, Chuin-Shan
    • Interaction and multiscale mechanics
    • /
    • 제6권3호
    • /
    • pp.301-316
    • /
    • 2013
  • The influence of indenter geometry on nanoindentation was studied using a static molecular dynamics simulation. Dislocation nucleation, dislocation locks, and dislocation movements during nanoindentation into Al (001) were studied. Spherical, rectangular, and Berkovich indenters were modeled to study the material behaviors and dislocation activities induced by their different shapes. We found that the elastic responses for the three cases agreed well with those predicted from elastic contact theory. Complicated stress fields were generated by the rectangular and Berkovich indenters, leading to a few uncommon nucleation and dislocation processes. The calculated mean critical resolved shear stresses for the Berkovich and rectangular indenters were lower than the theoretical strength. In the Berkovich indenter case, an amorphous region was observed directly below the indenter tip. In the rectangular indenter case, we observed that some dislocation loops nucleated on the plane. Furthermore, a prismatic loop originating from inside the material glided upward to create a mesa on the indenting surface. We observed an unusual softening phenomenon in the rectangular indenter case and proposed that heterogeneously nucleating dislocations are responsible for this.

A general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow

  • Baudille, Riccardo;Biancolini, Marco Evangelos
    • Interaction and multiscale mechanics
    • /
    • 제1권4호
    • /
    • pp.449-465
    • /
    • 2008
  • In this paper a general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow is presented. The fluid is solved by a general purpose commercial computational fluid dynamics (CFD) package (FLUENT 6.2), while the structure is managed by means of a dedicated finite element method solver, coded in FLUENT as a user-defined function (UDF). A weak fluid structure interaction coupling scheme is adopted exchanging information at the end of each time step. An arbitrary cantilever beam can be introduced in the CFD mesh with its wetted boundaries specified; the cantilever can also interact with specified rigid and flexible walls through use of a non-linear contact algorithm. After a brief review of relevant scientific contributions, some test cases and application examples are presented.

Longitudinal vibration of double nanorod systems using doublet mechanics theory

  • Aydogdu, Metin;Gul, Ufuk
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.37-52
    • /
    • 2020
  • This paper investigates the free and forced longitudinal vibration of a double nanorod system using doublet mechanics theory. The doublet mechanics theory is a multiscale theory spanning between lattice dynamics and continuum mechanics. Equations of motion and boundary conditions for the double nanorod system are obtained using Hamilton's principle. Clamped-clamped and clamped-free boundary conditions are considered. Frequencies and dynamic displacements are determined to demonstrate the effects of length scale parameter of considered material and geometry of the nanorods. It is shown that frequencies obtained by the doublet mechanics theory are bounded from above (van Hove singularity) and unlike classical elasticity theory doublet mechanics theory predicts finite number of modes depending on the length of the nanotube. The present doublet mechanics results have been compared to molecular dynamics, experimental and nonlocal theory results and good agreement is observed between the present and other mentioned results. The difference between wave frequencies of graphite is less than 10% between doublet mechanics and experimental results near to the end of the first Brillouin zone.