• Title/Summary/Keyword: multiresolution wavelet decomposition

Search Result 20, Processing Time 0.029 seconds

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

A Study on the Algorithm for Detection of Partial Discharge in GIS Using the Wavelet Transform

  • J.S. Kang;S.M. Yeo;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.214-221
    • /
    • 2003
  • In view of the fact that gas insulated switchgear (GIS) is an important piece of equipment in a substation, it is highly desirable to continuously monitor the state of equipment by measuring the partial discharge (PD) activity in a GIS, as PD is a symptom of an insulation weakness/breakdown. However, since the PD signal is relatively weak and the external noise makes detection of the PD signal difficult, it therefore requires careful attention in its detection. In this paper, the algorithm for detection of PD in the GIS using the wavelet transform (WT) is proposed. The WT provides a direct quantitative measure of the spectral content and dynamic spectrum in the time-frequency domain. The most appropriate mother wavelet for this application is the Daubechies 4 (db4) wavelet. 'db4', the most commonly applied mother wavelet in the power quality analysis, is very well suited to detecting high frequency signals of very short duration, such as those associated with the PD phenomenon. The proposed algorithm is based on utilizing the absolute sum value of coefficients, which are a combination of D1 (Detail 1) and D2 (Detail 2) in multiresolution signal decomposition (MSD) based on WT after noise elimination and normalization.

NEW LOOK AT THE CONSTRUCTIONS OF MULTIWAVELET FRAMES

  • Kim, Hong-Oh;Kim, Rae-Young;Lim, Jae-Kun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.563-573
    • /
    • 2010
  • Using the fiberization technique of a shift-invariant space and the matrix characterization of the decomposition of a shift-invariant space of finite length into an orthogonal sum of singly generated shift-invariant spaces, we show that the main result in [13] can be interpreted as a statement about the length of a shift-invariant space, and give a more natural construction of multiwavelet frames from a frame multiresolution analysis of $L^2(\mathbb{R}^d)$.

Video Coding Using Wavelet Decomposition for Very Low Bit - rate Networks (초저속 전송 네트웍을 위한 웨이브릿 변환을 이용한 비디오 코딩)

  • Oh, Hwang-Seok;Lee, Heung-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2629-2639
    • /
    • 1997
  • The video coding for very low bit-rate has recently received considerable attention, but the conventional coding schemes with block based transform suffer from the blocky effect for the constraints of limited bit-rate. In this paper, we present a video coding system based on wavelet transform and multiresolution motion estimation/compensation for very low bit-rate video. The proposed scheme uses the wavelet transform which is flexible to represent non-stationary image signals and adaptable to the human visual characteristics. The wavelet transformed coefficients are coded by various coding modes in accordance with the sum of absolute error after motion estimation/compensation in wavelet decomposed domain. And simple buffer control technique is applied to handle constant image quality. It is shown that the presented scheme has more acceptable image quality without blocky effects than conventional block based transform video coding.

  • PDF

Multiresolution Model for Vector Fields Defined over Curvilinear Grids (곡선 그리드상에 정의된 벡터 필드를 위한 다해상도 모형)

  • 정일홍;장우현;조세홍;이봉환
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.542-549
    • /
    • 2000
  • This Paper presents the development of multiresolution model for the analysis and visualization of two-dimensional flows over curvilinear grids. Multiresolution analysis provides a useful and efficient tool to represent shape and to analyze features at multiple level of detail. Applying multiresolution analysis to vector field visualization is very useful and powerful as the vector field's data sets are usually huge and complex. Using approximation at lower resolution, brief outline of topology can be extracted in short periods of time. Local reconstruction allows the user to zoom in or out, only by reconstructing the portion of interest. This new model is based upon nested spaces of piecewise defined function over nested curvilinear grid domains. The nested domains are selected so as to maintain the original geometry of the inner boundary. This paper presents the refinement and decomposition equations for Haar wavelet over these domains and shows some examples.

  • PDF

Design of Fresnelet Transform based on Wavelet function for Efficient Analysis of Digital Hologram (디지털 홀로그램의 효율적인 분해를 위한 웨이블릿 함수 기반 프레넬릿 변환의 설계)

  • Seo, Young-Ho;Kim, Jin-Kyum;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.291-298
    • /
    • 2019
  • In this paper, we propose a Fresnel transform method using various wavelet functions to efficiently decompose digital holograms. After implementing the proposed wavelet function-based Fresnelet transforms, we apply it to the digital hologram and analyze the energy characteristics of the coefficients. The implemented wavelet transform-based Fresnelet transform is well suited for reconstructing and processing holograms which are optically obtained or generated by computer-generated hologram technique. After analyzing the characteristics of the spline function, we discuss wavelet multiresolution analysis method based on it. Through this process, we proposed a transform tool that can effectively decompose fringe patterns generated by optical interference phenomena. We implement Fresnelet transform based on wavelet function with various decomposition properties and show the results of decomposing fringe pattern using it. The results show that the energy distribution of the coefficients is significantly different depending on whether the random phase is included or not.

A Study on the Multiresolutional Coding Based on Spline Wavelet Transform (스플라인 웨이브렛 변환을 이용한 영상의 다해상도 부호화에 관한 연구)

  • 김인겸;정준용;유충일;이광기;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2313-2327
    • /
    • 1994
  • As the communication environment evolves, there is an increasing need for multiresolution image coding. To meet this need, the entrophy constratined vector quantizer(ECVQ) for coding of image pyramids by spline wavelet transform is introduced in this paper. This paper proposes a new scheme for image compression taking into account psychovisual feature both in the space and frequency domains : this proposed method involves two steps. First we use spline wavelet transform in order to obtain a set of biorthogonal subclasses of images ; the original image is decomposed at different scale using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal directions and maintains constant the number of pixels required the image. Second, according to Shannon's rate distortion theory, the wavelet coefficients are vectored quantized using a multi-resolution ECVQ(entropy-constrained vector quantizer) codebook. The simulation results showed that the proposed method could achieve higher quality LENA image improved by about 2.0 dB than that of the ECVQ using other wavelet at 0.5 bpp and, by about 0.5 dB at 1.0 bpp, and reduce the block effect and the edge degradation.

  • PDF

A Novel Multifocus Image Fusion Algorithm Based on Nonsubsampled Contourlet Transform

  • Liu, Cuiyin;Cheng, Peng;Chen, Shu-Qing;Wang, Cuiwei;Xiang, Fenghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.539-557
    • /
    • 2013
  • A novel multifocus image fusion algorithm based on NSCT is proposed in this paper. In order to not only attain the image focusing properties and more visual information in the fused image, but also sensitive to the human visual perception, a local multidirection variance (LEOV) fusion rule is proposed for lowpass subband coefficient. In order to introduce more visual saliency, a modified local contrast is defined. In addition, according to the feature of distribution of highpass subband coefficients, a direction vector is proposed to constrain the modified local contrast and construct the new fusion rule for highpass subband coefficients selection The NSCT is a flexible multiscale, multidirection, and shift-invariant tool for image decomposition, which can be implemented via the atrous algorithm. The proposed fusion algorithm based on NSCT not only can prevent artifacts and erroneous from introducing into the fused image, but also can eliminate 'block effect' and 'frequency aliasing' phenomenon. Experimental results show that the proposed method achieved better fusion results than wavelet-based and CT-based fusion method in contrast and clarity.

The Improved BAMS Filter for Image Denoising (영상 잡음제거를 위한 개선된 BAMS 필터)

  • Woo, Chang-Yong;Park, Nam-Chun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.270-277
    • /
    • 2010
  • The BAMS filter is a kind of wavelet shrinkage filter based on the Bayes estimators with no simulation, therefore it can be used for a real time filter. The denoising efficiency of BAMS filter is seriously affected by the estimated noise variance in each wavelet band. To remove noise in signals in existing BAMS filter, the noise variance is estimated by using the quartile of the finest level of details in the wavelet decomposition, and with this variance, the noise of the level is removed. In this paper, to remove the image noise includingodified quartile of the level of detail is proposed. And by these techniques, the image noises of mid and high frequency bands are removed, and the results showed that the increased PSNR of ab the midband noise, the noise variance estimation method using the monotonic transform and the mout 2[dB] and the effectiveness in denosing of low noise deviation images.

A Novel Multi-focus Image Fusion Technique Using Directional Multiresolution Transform (방향성 다해상도 변환을 사용한 새로운 다중초점 이미지 융합 기법)

  • Park, Dae-Chul;Atole, Ronnel R.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.59-68
    • /
    • 2009
  • This paper addresses a hybrid multi-focus image fusion scheme using the recent curvelet transform constructions. Hybridization is obtained by combining the MS fusion rule with a novel "copy" method. The proposed scheme use MS rule to fuse the m most significant terms in spectrum of an image at each decomposition level. The scheme is dubbed in this work as m-term fusion in adherence to its use of the MSC (most significant coefficients) in the transform set at any given scale, orientation, and translation. We applied the edge-sensitive objective quality measure proposed by Xydeas and Petrovic to evaluate the method. Experimental results show that the proposed scheme is a potential alternative to the redundant, shift-invariant Dual-Tree Complex Wavelet transforms. In particular, it was confirmed that a 50% m-term fusion produces outputs with no visible quality degradation.

  • PDF