• 제목/요약/키워드: multiplicative uncertainty

검색결과 37건 처리시간 0.024초

원료채집기의 제어: 모델링, 계수추정, 견실한 스미스 예측기의 설계 (Reclaimer Control: Modeling , Parameter Estimation, and a Robust Smith Predictor Design)

  • 김성훈;홍금식;강동헌
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.923-931
    • /
    • 1999
  • In this paper, a modeling and a robust time-delay control for the reclaimer are investigated. Supplying the same amount of a raw material throughout the reclamation process from the raw yard to a sinter plant is important to keep the quality of the molten steel uniform in blast furnaces. As the actual parameter values of the reclaimer are not available, the boom rotational dynamics are modeled as a second order differential equation with unknown coefficients. The unknown parameters in the nominal model are estimated using a recursive estimation method. Another important factor in the control design of the reclaimer is the large time-delay in output measurement. Assuming a multiplicative uncertainty, that accounts for both the unstructured uncertainty neglected in the modeling and the structured uncertainty contained in the parameter estimation, a robust Smith predictor is designed. A robust stability criterion for the multiplicative uncertainty is also derived. Following the work of Goodwin et al. [4], a quantifying procedure of the multiplicative uncertainty bound, through experiments , is described. Experimental and simulation results are provided.

  • PDF

DESIGN AND VALIDATION OF ROBUST AND AUTONOMOUS CONTROL FOR NUCLEAR REACTORS

  • SHAFFER ROMAN A.;EDWARDS ROBERT M.;LEE KWANG Y.
    • Nuclear Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.139-150
    • /
    • 2005
  • A robust control design procedure for a nuclear reactor has been developed and experimentally validated on the Penn State TRIGA research reactor. The utilization of the robust controller as a component of an autonomous control system is also demonstrated. Two methods of specifying a low order (fourth-order) nominal-plant model for a robust control design were evaluated: 1) by approximation based on the 'physics' of the process and 2) by an optimal Hankel approximation of a higher order plant model. The uncertainty between the nominal plant models and the higher order plant model is supplied as a specification to the ,u-synthesis robust control design procedure. Two methods of quantifying uncertainty were evaluated: 1) a combination of additive and multiplicative uncertainty and 2) multiplicative uncertainty alone. The conclusions are that the optimal Hankel approximation and a combination of additive and multiplicative uncertainty are the best approach to design robust control for this application. The results from nonlinear simulation testing and the physical experiments are consistent and thus help to confirm the correctness of the robust control design procedures and conclusions.

곱셈형 불확실성을 갖는 서보계의 강인한 안정성 (Robust Stability of a Servosystem with Multiplicative Uncertainty)

  • 김영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권2호
    • /
    • pp.125-125
    • /
    • 1996
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers robust stability of this 2DOF servosystem to the unstructured uncertainty of the controlled plant. A robust stability condition is obtained using Riccati inequality, which is independent of the gain of the integral compensator. An example is presented, which demonstrates that the tracking response of the 2DOF servosystem with uncertainty becomes faster when the integral gain made larger under the robust stability condition.

곱셈형 불확실성을 갖는 서보계의 강인한 안정성 (Robust Stability of a Servosystem with Multiplicative Uncertainty)

  • 김영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권2호
    • /
    • pp.57-62
    • /
    • 1996
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers robust stability of this 2DOF servosystem to the unstructured uncertainty of the controlled plant. A robust stability condition is obtained using Riccati inequality, which is independent of the gain of the integral compensator. An example is presented, which demonstrates that the tracking response of the 2DOF servosystem with uncertainty becomes faster when the integral gain made larger under the robust stability condition.

  • PDF

쌍대비교에 기반한 승법적 효용함수의 결정 (Determination of Multiplicative Utility Function Based on the Pair-wise Comparisons)

  • 김경모
    • 품질경영학회지
    • /
    • 제33권1호
    • /
    • pp.64-72
    • /
    • 2005
  • The ever increasing demand for enhanced competitiveness of engineered products requires "designing-in-quality" strategies that can effectively and efficiently incorporate concepts of uncertainty and quality into design. Multi-attribute utility function is commonly used to represent the decision-maker's preference on multiple design attributes under conditions of uncertainty and risk. One of the major issues in implementing this approach concerns the generation of appropriate utility function, especially in a complex engineering design environment. Typically, the decision maker's preference is revealed through lottery questions rather than being structured on the deductive reasoning to reflect the nonlinear tradeoffs among the attributes. The use of such intuitive procedures can lead to inexact preference information that may result in inaccuracy and rank reversal problems. This paper presents an alternative procedure based on the pair-wise comparisons between design alternatives towards a consistent preference presentation in assessing multiplicative utility function. The effectiveness of the overall procedures is tested with the aid of an injection-molding process design for a capacitor can and the results are discussed.

전기.유압 서보 시스템의 제어성능 비교 (Comparison of Control Performance in Electro.hydraulic Servo Systems)

  • 김도태;박경섭
    • 유공압시스템학회논문집
    • /
    • 제3권2호
    • /
    • pp.14-20
    • /
    • 2006
  • A controller design procedure for an electro-hydraulic positioning systems has been developed using $H{\infty}$ control. The generalized plant models and weighting function for multiplicative uncertainty modelling error was presented along with $H{\infty}$ controller designs in order to investigate the robust stability and performance. Both disturbance rejection and command tracking performances were improved with the $H{\infty}$ controller, and the better uniformity of time response is achieved across wide range of operating conditions than the PID, LQR and LQG control scheme. The multiplicative uncertainty case was specifically suited for the design of an electro-hydraulic positioning control systems using $H{\infty}$ control.

  • PDF

$H_\infty$제어에 의한 전기${\cdot}$유압 서보계의 위치제어 (Position Control of Electro-Hydraulic Servo System Using $H_\infty$)

  • 박경섭;김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.103-108
    • /
    • 2005
  • In this paper, a controller design procedure for an electro-hydraulic positioning systems have developed using $H_\infty$ control theory. The generalized models and weighting functions for a multiplicative uncertainty modelling error is presented along with $H_\infty$ controller designs in order to investigate the robust stability and performance. The multiplicative uncertainty case is specifically suited for the design of an electro-hydraulic positioning control systems using $H_\infty$ control.

  • PDF

Fault Detection System for Front-wheel Sleeving Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang;Kim, Jin-Ho;Ha, Ju-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.45.3-45
    • /
    • 2001
  • This paper deal with a fault detection algorithm for front wheel passenger car systems by using robust $H{\infty}$ control theory. Firstly, we present a unified formulation of vehicle dynamics for front wheel car systems and transform this formulation into state space form. Also, by considering the cornering stiffness which depends on the tyre-road contact conditions, a multiplicative uncertainty for vehicle model is described. Next, the failures of sensor and actuator for vehicle system are defined in which the fault .lter is considered. From the nominal vehicle model, an augmented system includes the multiplicative uncertainty and the model of fault filter is proposed. Lastly by using $H{\infty}$ norm property the fault detect conditions are deefi.ned, and the actuator and sensor failures are detected and isolated by designing the robust $H{\infty}$ controller, respectively.

  • PDF

구조화된 불확실성을 갖는 전력 계통의 적응 관측기 설계 (Design of Adaptive Observer for Power System with Structured Uncertainty)

  • 황정록;김도우;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1211-1214
    • /
    • 1999
  • Power system operating conditions vary with system configuration and loading conditions. Coefficients in nominal system model change in a complex manner with different operating point and so does system dynamic behavior. With the aid of unstructured and structured uncertainty descriptions the worst system variations can be estimated and formulated into two different uncertainty models multiplicative unstructured uncertainty in the form of transfer function and structured uncertainty with the parametric uncertainty description. in frequency domain

  • PDF

전기 기계 구동 시스템에 대한 H$\infty$ 최적 제어기 구성 (H$\infty$ Optimal Controller Synthesis for an electromechanical actuator system)

  • 김용규;유창근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1117-1120
    • /
    • 1999
  • In this paper, we design the H$\infty$ optimal controller satisfying robust stability and performance in spite of the plant uncertainty for an electro-mechanical actuator system and analyze the controller in frequency domain. H$\infty$ optimal controller K was designed using iteration algorithm suggested by DOYLE. Using the controller in an electro-mechanical actuator system, the joint with very small coupling rigidity coefficient was used to vary the control parameter. The plant unstructured uncertainty was assumed to be a multiplicative type.

  • PDF