Xia, Nan;Lam, Wendy;Tin, Pamela;Yoon, Sungwon;Zhang, Na;Zhang, Weiwei;Ma, Ke;Fielding, Richard
Safety and Health at Work
/
v.11
no.1
/
pp.26-32
/
2020
Background: Hong Kong's construction industry currently faces a manpower crisis. Blue-collar workers are a disadvantaged group and suffer higher levels of chronic diseases, for example, cancer, than the wider population. Cancer risk factors are likely to cluster together. We documented prevalence of cancer-associated lifestyle risk behaviors and their correlates among Hong Kong construction workers. Methods: Data were collected from workers at 37 railway-related construction worksites throughout Hong Kong during May 2014. Tobacco use, alcohol consumption, unbalanced nutrition intake, and physical inactivity were included in the analysis. Latent class analysis and multivariable logistic regression were performed to identify the patterns of risk behaviors related to cancer, as well as their impact factors among construction workers in Hong Kong. Results: Overall, 1,443 workers participated. Latent class analysis identified four different behavioral classes in the sample. Fully adjusted multiple logistic regression identified age, gender, years of Hong Kong residency, ethnicity, educational level, and living status differentiated behavioral classes. Conclusion: High levels of lifestyle-related cancer-risk behaviors were found in most of the Hong Kong construction workers studied. The present study contributes to understanding how cancer-related lifestyle risk behaviors cluster among construction workers and relative impact factors of risk behaviors. It is essential to tailor health behavior interventions focused on multiple risk behaviors among different groups for further enlarging the effects on cancer prevention.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.5C
/
pp.527-539
/
2009
In this paper, we propose an asynchonous ICI (Inter-Cell Interference) mitigation techniques for 3GPP LTE MIMO-OFDMA down-link receiver. An increasing in symbol timing misalignments may occur relative to sychronous network as the result of BS (Base Station) timing differences. Such symbol synchronization errors that exceed the guard interval or the cyclic prefix duration may result in MAI (Multiple Access Interference) for other carriers. In particular, at the cell boundary, this MAI becomes a critical factor, leading to degraded channel throughput and severe asynchronous ICI. Hence, many researchers have investigated the interference mitigation method in the presence of asynchronous ICI and it appears that the knowledge of the SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise is an important issue. Generally, it is assumed that the SCM estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and training symbol is also not appropriate for MIMO-OFDMA system such as LTE. Therefore, a noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce the noise effectively minimizing estimation error caused by the spectral leakage but also implement frequency-domain moving average filter easily. By using computer simulation, we show that the proposed method can provide up to 3dB SIR gain compared with the conventional method.
Park, No-Wook;Yoo, Hee Young;Kim, Yihyun;Hong, Suk-Young
Korean Journal of Remote Sensing
/
v.28
no.5
/
pp.489-499
/
2012
In this paper, a classifier ensemble framework for remote sensing data classification is presented that combines classification results generated from both different training sets and different classifiers. A core part of the presented framework is to increase a diversity between classification results by using both different training sets and classifiers to improve classification accuracy. First, different training sets that have different sampling densities are generated and used as inputs for supervised classification using different classifiers that show different discrimination capabilities. Then several preliminary classification results are combined via a majority voting scheme to generate a final classification result. A case study of land-cover classification using multi-temporal ENVISAT ASAR data sets is carried out to illustrate the potential of the presented classification framework. In the case study, nine classification results were combined that were generated by using three different training sets and three different classifiers including maximum likelihood classifier, multi-layer perceptron classifier, and support vector machine. The case study results showed that complementary information on the discrimination of land-cover classes of interest would be extracted within the proposed framework and the best classification accuracy was obtained. When comparing different combinations, to combine any classification results where the diversity of the classifiers is not great didn't show an improvement of classification accuracy. Thus, it is recommended to ensure the greater diversity between classifiers in the design of multiple classifier systems.
IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.14
no.5
/
pp.30-37
/
2015
The study for enhancing the data transmission rate of the next generation wireless communication system using MIMO system operating in the frequency selective fading environment is currently actively conducted. Mixed signal from each transmitted antennas are received at antennas. The training signal with orthogonal property is needed to separate the mixed signal and enable to estimate channel and time synchronization. In this paper we introduce several training sequences used in MIMO communication system and proposed the modified WeCAN sequence with good auto-correlation property in interested area. We compared auto-correlation property of each sequence via simulation and compared the performance of sequences in doppler shift and multipath fading channel.
International Journal of Industrial Entomology and Biomaterials
/
v.6
no.2
/
pp.171-178
/
2003
Four thermo-tolerant lines of silkworm, Bombyx mori, (L.) viz., A HT, B HT (Chinese type) and F HT, G HT (Japanese type) were evolved by utilizing the breeding resource material (identified from initial screening at a temperature of 31 ${\pm} 1^{\circ}C$ and relative humidity 85 ${\pm}$ 5%) through conventional breeding. These tolerant lines were crossed with productive breeds and forty four hybrids were evaluated on eight economic traits by the Multiple Trait Evaluation Index Method. Ten hybrids were short-listed based on the average evaluation index value larger than 50 for eight economic traits studied. The identified ten hybrids recorded higher index values (> 50) for most of the traits studied. Single hybrid G ${\times}$ CSR12 indicated average index value larger than 50 for six traits viz., pupation number (58), cocoon weight (67), shell weight (65), average filament length (74), raw silk % (69), reelability % (51) except for shell ratio % (41). The standard deviation of the cocoons in the above hybrid was 8.41 in the hybrid cocoon length and width measurement. However, two selected hybrids viz., A ${\times}$ CSR5 and G ${\times}$ CSR13 recorded average index value larger than 50 for all the traits viz., pupation number (57, 60), cocoon weight (50, 54), shell weight (56, 57), shell ratio percentage (59, 53), average filament length (55, 60), raw silk percentage (63, 67) and reelability percentage (53, 53). The standard deviation of the cocoons in the two selected hybrids viz., A ${\times}$ CSR5 and G ${\times}$ CSR13 was 8.41 and 8.06 respectively in the cocoon length and width measurement.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.551-553
/
1999
This paper explores the utility of a new classifier fusion approach to discrimination. Multiple classifier fusion, a popular approach in the field of pattern recognition, uses estimates of each individual classifier's local accuracy on training data sets. In this paper we investigate the effectiveness of fusion methods compared to individual algorithms, including the artificial neural network and k-nearest neighbor techniques. Moreover, we propose an efficient meta-classifier architecture based on an approximation of the posterior Bayes probabilities for learning the oracle.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.4
/
pp.407-415
/
2019
Hearing - impaired children who have difficulty hearing and hearing go through pronunciation training. The purpose of this study is to provide the pronunciation training system based on digital contents that can be used for repeated hearing training while maintaining interest in hearing - impaired children. For this purpose, we conducted an interview survey for users and experts. Based on the results, we developed a digital content based pronunciation training system. Finally, to verify the effect of the digital service implemented, the user test was conducted for the hearing - impaired children. As a result of the interview, repeated training and interest factors were found to be essential factors affecting pronunciation training. In implementing digital services, we have used fairy tales and a variety of interactive elements to derive children's interests and designed a user flow that can train multiple words and sentences for effective repetition training. As a result of the test, this digital content was evaluated positively.
The purpose of this study was to determine the effect of electrical stimulation biofeedback on motor learning of quadriceps muscle isometric exercise in 3 patients who have undergone total knee replacement surgery. A multiple baseline design across subjects was used. The electrical stimulation biofeedback was provided with each patient during quadriceps isometric exercise, which last 10 to 14 sessions with 10 repetitions each sessions. After training patients received 4 retention tests. Maximum muscle activity was measured pre- and post- electrical stimulation biofeedback training and retention test to evaluate the effect of biofeedback training. Maximum isometric muscle activity of quadriceps was increased after electrical stimulation biofeedback training in all subjects. The results indicate that a electrical stimulation biofeedback training is a useful method to improve motor learning of quadriceps isometric exercise in total knee replacement.
The Journal of Asian Finance, Economics and Business
/
v.7
no.12
/
pp.577-582
/
2020
The performance of a teacher has an important role in the success of education in general. This study aims to determine the factors that affect the decline in teacher performance in one of the junior secondary schools in Indonesia. Based on the literature review, four exogenous variables were identified, namely, training, utilization of information technology, intellectual intelligence, and emotional intelligence. This study uses primary data, collected from a questionnaire distributed to respondents. The questionnaire items are measured using a Likert scale. The sample in this study were all teachers at MTS Darul Falah Sirahan, totaling 32 people. The analysis technique used in testing the hypothesis of this study is multiple regression analysis. Statistical product and service solutions are used as analysis tools. The results of this study indicate that only the variable 'utilization of information technology' has a positive and significant effect. However, the variables 'training,' 'intellectual intelligence,' and 'emotional intelligence' did not have a significant effect. This finding contradicts the literature in general. Therefore, this study recommends improving training methods, both those carried out internally by schools and by related agencies, and schools still need to optimize guidance and potential for teacher's intelligence in improving performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.