• Title/Summary/Keyword: multiple-input multiple-output (MIMO) systems

Search Result 407, Processing Time 0.026 seconds

An Efficient Soft-Output MIMO Signal Detection Method Based on Multiple Channel Ordering Technique and Its VLSI Implementation (다중 채널 순서화 기술 기반 효율적인 Soft-Output MIMO 신호검출 기법과 VLSI 구현)

  • Im, Tae-Ho;Yu, Sung-Wook;Kim, Jae-Kwon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1044-1051
    • /
    • 2010
  • In this paper, we propose an efficient soft-output signal detection method for spatially multiplexed multiple input multiple output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC (ESIC) algorithm with a multiple ordering technique in a very efficient way. As a result, the log likelihood ratio (LLR) values can be computed by using a very small set of candidate symbol vectors. The proposed method has been implemented with a $0.13{\mu}m$ CMOS technology for a $4{\times}4$ 16-QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.

Estimation of Sparse Channels in Millimeter-Wave MU-MIMO Systems

  • Hu, Anzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2102-2123
    • /
    • 2016
  • This paper considers a channel estimation scheme for millimeter-wave multiuser multiple-input multiple-output systems. According to the proposed method, parts of the beams are selected and the channel parameters are estimated according to the sparsity of channels and the orthogonality of the beams. Since the beams for each channel become distinct and the signal power increases with the increased number of antennas, the proposed approach is able to achieve good estimation performance. As a result, the sum rate can be increased in comparison with traditional approaches, and channels can be estimated with fewer pilot symbols. Numerical results verify that the proposed approach outperforms traditional approaches in cases with large numbers of antennas.

Channel Quantization for Block Diagonalization with Limited Feedback in Multiuser MIMO Downlink Channels

  • Moon, Sung-Hyun;Lee, Sang-Rim;Kim, Jin-Sung;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Block diagonalization (BD) has been proposed as a simple and effective technique in multiuser multiple-input multiple-output (MU-MIMO) broadcast channels. However, when channel state information (CSI) knowledge is limited at the transmitter, the performance of the BD may be degraded because inter-user interference cannot be completely eliminated. In this paper, we propose an efficient CSI quantization technique for BD precoded systems with limited feedback where users supported by a base station are selected by dynamic scheduling. First, we express the received signal-to-interference-plus-noise ratio (SINR) when multiple data streams are transmitted to the user, and derive a lower bound expression of the expected received SINR at each user. Then, based on this measure, each user determines its quantized CSI feedback information which maximizes the derived expected SINR, which comprises both the channel direction and the amplitude information. From simulations, we confirm that the proposed SINR-based channel quantization scheme achieves a significant sum rate gain over the conventional method in practical MU-MIMO systems.

Limited Feedback Precoding for Correlated Massive MIMO Systems (공간 상관도를 가지는 거대배열 다중안테나 시스템에서 압축채널 제한적 피드백 알고리즘)

  • Lim, Yeon-Geun;Chae, Chan-Byoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.431-436
    • /
    • 2014
  • In this paper, we propose a compressive sensing-based channel quantization feedback mechanism that is appropriate for practical massvie multiple-input multiple-output (MIMO) systems. We assume that the base station (BS) has a compact uniform square array that has a highly correlated channel. To serve multiple users, the BS uses a zero-forcing precoder. Our proposed channel feedback algorithm can reduce the feedback overhead as well as a codebook search complexity. Numerical simulations confirm our analytical results.

Sum-Rate Improvement Method Using Quasi-Orthogonal Beam Pairs for UCA MIMO Transmission (UCA MIMO 전송 시 준직교적 빔 쌍을 활용한 합 전송률 향상 방안)

  • Yang, Jiyeong;Kim, Huiwon;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.32-35
    • /
    • 2018
  • Massive multiple-input multiple-output (MIMO) transmission is an essential technique for achieving the high bandwidth efficiency required in 5G mobile communication systems. Various forms of arrays can be used as the number of antenna elements increases for massive MIMO transmission. In this letter, we propose a beamforming algorithm applicable to multiuser MIMO transmission using uniform circular arrays. By employing quasi-orthogonal beam pairs obtained from the inter-beam correlation information, we minimize inter-user interference and evaluate the resulting performance gain.

A Generalized Blind Adaptive Multi-User Detection Algorithm for Multipath Rayleigh Fading Channel Employed in a MIMO System

  • Fahmy Yasmine A.;Mourad Hebat-Allah M.;Al-Hussaini Emad K.
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.290-296
    • /
    • 2006
  • In this paper, a generalized blind adaptive algorithm is introduced for multi-user detection of direct sequence code division multiple access (OS-COMA) wireless communication systems. The main property of the proposed algorithm is its ability to resolve the multipath fading channel resulting in inter symbol interference (ISI) as well as multiple access interference (MAI). Other remarkable properties are its low complexity and mitigation to the near-far problem as well as its insensitivity to asynchronous transmission. The proposed system is based on the minimization of the output energy and convergence to the minimum mean square error (MMSE) detector. It is blind in the sense that it needs no knowledge of the other users' signatures, only the intended user signature and timing are required. Furthermore, the convergence of the minimum output energy (MOE) detector to the MMSE detector is analytically proven in case of M-ary PSK. Depicted results show that the performance of the generalized system dominates those previously considered. Further improvements are obtained when multiple input multiple output (MIMO) technique is employed.

Optimal Number of Users in Zero-Forcing Based Multiuser MIMO Systems with Large Number of Antennas

  • Jung, Minchae;Kim, Younsun;Lee, Juho;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.362-369
    • /
    • 2013
  • The optimal number of users achieving the maximum sum throughput is analyzed in zero-forcing (ZF) based multiuser multiple-input multiple-output (MIMO) systems with a large number of base station (BS) antennas. By utilizing deterministic ergodic sum rates for the ZF-beam forming (ZF-BF) and ZF-receiver (ZF-R) with a large number of BS antennas [1], [2], we can obtain the ergodic sum throughputs for the ZF-BF and ZF-R for the uplink and downlink frame structures, respectively. Then, we can also formulate and solve the optimization problems maximizing the ergodic sum throughputs with respect to the number of users. This paper shows that the approximate downlink sum throughput for the ZF-BF is a concave function and the approximate uplink sum throughput for the ZF-R is also a concave function in a feasible range with respect to the number of users. The simulation results verify the analyses and show that the derived numbers of users provide the maximum sum throughputs for the ZF-BF as well as ZF-R in multiuser MIMO systems with a large number of BS antennas.

A New Subspace Search-based Method for MIMO Systems (MIMO 시스템에서 부분 검색 공간 기반의 검파기법)

  • Nam, Sang-Ho;Ko, Kyun-Byoung;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.25-32
    • /
    • 2011
  • In this paper, we propose a subspace search-based detector (SSD) with low-complexity to achieve near optimal performance for multiple-input multiple-output systems. As an effective solution to reduce the prohibitive computational complexity of the optimal maximum likelihood detector, a partial candidate symbol vector is generated through a partitioned search space but not the entire search space. In addition, based on a partial candidate symbol vector, an ensemble candidate symbol vector generation considering the whole search space is introduced to produce a near optimal solution. As a result, the proposed SSD achieves near-maximum-likelihood performance while having a significantly reduced computational complexity.

An Ordered Successive Interference Cancellation Scheme in UWB MIMO Systems

  • An, Jin-Young;Kim, Sang-Choon
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.472-474
    • /
    • 2009
  • In this letter, an ordered successive interference cancellation (OSIC) scheme is applied for multiple-input multiple-output (MIMO) detection in ultra-wideband (UWB) communication systems. The error rate expression of an OSIC receiver on a log-normal multipath fading channel is theoretically derived in a closed form solution. Its bit error rate performance is analytically compared with that of a zero forcing receiver in the UWB MIMO detection scheme followed by RAKE combining.

Wiretapping Strategies for Artificial Noise Assisted Communication in MU-MIMO wiretap channel

  • Wang, Shu;Da, Xinyu;Chu, Zhenyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2166-2180
    • /
    • 2016
  • We investigate the opposite of artificial noise (AN)-assisted communication in multiple-input-multiple-output (MIMO) wiretap channels for the multiuser case by taking the side of the eavesdropper. We first define a framework for an AN-assisted multiuser multiple-input-multiple-output (MU-MIMO) system, for which eavesdropping methods are proposed with and without knowledge of legitimate users' channel state information (CSI). The proposed method without CSI is based on a modified joint approximate diagonalization of eigen-matrices algorithm, which eliminates permutation indetermination and phase ambiguity, as well as the minimum description length algorithm, which blindly estimates the number of secret data sources. Simulation results show that both proposed methods can intercept information effectively. In addition, the proposed method without legitimate users' CSI performs well in terms of robustness and computational complexity.