• Title/Summary/Keyword: multiple switching

Search Result 404, Processing Time 0.025 seconds

Design and Implementation of Digital Electrical Impedance Tomography System (디지털 임피던스 영상 시스템의 설계 및 구현)

  • 오동인;백상민;이재상;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.

Design of ATM Switch-based on a Priority Control Algorithm (우선순위 알고리즘을 적용한 상호연결 망 구조의 ATM 스위치 설계)

  • Cho Tae-Kyung;Cho Dong-Uook;Park Byoung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.189-196
    • /
    • 2004
  • Most of the recent researches for ATM switches have been based on multistage interconnection network known as regularity and self-routing property. These networks can switch packets simultaneously and in parallel. However, they are blocking networks in the sense that packet is capable of collision with each other Mainly Banyan network have been used for structure. There are several ways to reduce the blocking or to increase the throughput of banyan-type switches: increasing the internal link speeds, placing buffers in each switching node, using multiple path, distributing the load evenly in front of the banyan network and so on. Therefore, this paper proposes the use of recirculating shuffle-exchange network to reduce the blocking and to improve hardware complexity. This structures are recirculating shuffle-exchange network as simplified in hardware complexity and Rank network with tree structure which send only a packet with highest priority to the next network, and recirculate the others to the previous network. after it decides priority number on the Packets transferred to the same destination, The transferred Packets into banyan network use the function of self routing through decomposition and composition algorithm and all they arrive at final destinations. To analyze throughput, waiting time and packet loss ratio according to the size of buffer, the probabilities are modeled by a binomial distribution of packet arrival. If it is 50 percentage of load, the size of buffer is more than 15. It means the acceptable packet loss ratio. Therefore, this paper simplify the hardware complexity as use of recirculating shuffle-exchange network instead of bitonic sorter.

  • PDF

Mutual-Backup Architecture of SIP-Servers in Wireless Backbone based Networks (무선 백본 기반 통신망을 위한 상호 보완 SIP 서버 배치 구조)

  • Kim, Ki-Hun;Lee, Sung-Hyung;Kim, Jae-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.32-39
    • /
    • 2015
  • The voice communications with wireless backbone based networks are evolving into a packet switching VoIP systems. In those networks, a call processing scheme is required for management of subscribers and connection between them. A VoIP service scheme for those systems requires reliable subscriber management and connection establishment schemes, but the conventional call processing schemes based on the centralized server has lack of reliability. Thus, the mutual-backup architecture of SIP-servers is required to ensure efficient subscriber management and reliable VoIP call processing capability, and the synchronization and call processing schemes should be changed as the architecture is changed. In this paper, a mutual-backup architecture of SIP-servers is proposed for wireless backbone based networks. A message format for synchronization and information exchange between SIP servers is also proposed in the paper. This paper also proposes a FSM scheme for the fast call processing in unreliable networks to detect multiple servers at a time. The performance analysis results show that the mutual backup server architecture increases the call processing success rates than conventional centralized server architecture. Also, the FSM scheme provides the smaller call processing times than conventional SIP, and the time is not increased although the number of SIP servers in the networks is increased.

An Improvement of Speed for Wavelength Multiplex Optical Network using Optical Micro Electro Mechanical Switches (광마이크로전자기계 스위치를 이용한 파장다중 광네트워크의 속도 재선)

  • Lee Sang-Wha;Song Hae-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.123-132
    • /
    • 2005
  • In this Paper, we present an improvement of switch node for wavelength multiplex optical network. Currently because of quick increase of internet traffic a big network capacity is demanded. Wavelength multiplex optical network Provides the data transfer of high speed and the transparent characteristic of the data. Therefore optic network configuration is the most powerful technology in the future. It will be able to control the massive traffic from the optical network in order to transmit the multimedia information of very many quantify. Consequently the node where the traffic control is Possible, is demanded. The optical switch node which manages efficiently the multiple wavelength was Proposed. This switch is composed of a optical switch module for switching and a wavelength converter module for wavelength conversion. It will be able to compose the switch fabric without optical/electro or electro/optical conversion using optical MEMS(Micro Electro Mechanical Switches) module. Finally, we present the good test result regarding the operational qualify of the switch fabric and the performance of optical signal from the switch node. The proposed switch node of the optic network will be able to control the massive traffic with all optical.

  • PDF

A Cluster-Based Channel Assignment Algorithm for IEEE 802.11b/g Wireless Mesh Networks (IEEE 802.11b/g 무선 메쉬 네트워크를 위한 클러스터 기반 채널 할당 알고리즘)

  • Cha, Si-Ho;Ryu, Min-Woo;Cho, Kuk-Hyun;Jo, Min-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.87-93
    • /
    • 2009
  • Wireless mesh networks (WMNs) are emerging technologies that provide ubiquitous environments and wireless broadband access. The aggregate capacity of WMNs can be improved by minimizing the effect of channel interference. The IEEE 802.11b/g standard which is mainly used for the network interface technology in WMNs provides 3 multiple channels. We must consider the channel scanning delay and the channel dependency problem to effectively assign channels in like these multi-channel WMNs. This paper proposes a cluster-based channel assignment (CB-CA) algorithm for multi-channel WMNs to solve such problems. The CB-CA does not perform the channel scanning and the channel switching through assigning co-channel to the inter-cluster head (CH) links. In the CB-CA, the communication between the CH and cluster member (CM) nodes uses a channel has no effect on channels being used by the inter-CH links. Therefore, the CB-CA can minimize the interference within multi-channel environments. Our simulation results show that CB-CA can improve the performance of WMNs.

Design and Performance Evaluation of a 3-Dimensional Nonblocking Copy Network for Multicast ATM Switches (ATM 멀티캐스트 스위치를 위한 3차원 논블럭킹 복사망의 설계 및 성능평가)

  • 신재구;손유익
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.6
    • /
    • pp.696-705
    • /
    • 2002
  • This paper presents a new copy network for multicast ATM switches. Many studies have been carried out up to date since the proposition of Lee's copy network. However, the overflows and cell conflicts within the switch have still been raised a problem in argument. In order to reduce those problems, we proposed a 3-dimensional multicast switching architecture which has shared buffers in this paper. The proposed architecture can reduce the overflows and cell conflicts through multiple paths and output ports even in the high load environments. Also, we proposed a cell splitting algorithm which handles the cell in the case of large fan-out, and a copy network to increase throughput by expanding the Lee's Broadcast Banyan Network(BBN). Cell copy uses the Boolean interval splitting algorithm and the multicast pattern of the cells according to the self-routing characteristics of the network. In the proposed copy network, we improve the problems such as overflow, cell splitting of large fanout, cell conflicts, etc., which were still existed in the Lee's network. The results of performance evaluation by computer simulation show that the proposed scheme has better throughput, cell loss rate and cell delay than the conventional method.

Uplink Relaying Scheme for Efficient Frequency Usage in Cognitive Radio Networks (인지 무선 네트워크 환경에서 효율적인 주파수 활용을 위한 상향링크 릴레이 기법)

  • Kim, Se-Woong;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.356-368
    • /
    • 2011
  • While most of the public radio spectrum bands are allocated to licensed users, cognitive radio has been considered as a promising technology for the efficient spectrum utilization. In this new technology, secondary users opportunistically use the temporally underutilized licensed bands as long as they do not give the harmful interference to primary users. In this paper, we focus on the infra-structured network condition in which the cognitive radio network consists of a cognitive radio base station and multiple secondary users. Upon detecting a primary user, the entire cognitive radio network generally switches to another available channel, even if most of the on-going communications still does not interfere with the primary user. Moreover, the network re-entry process on a new channel causes the service disruption of the on-going communications. For this reason, in this paper, we propose a relaying scheme for efficient frequency usage, in which the secondary user out of the interference range of a primary user performs as a relaying node for the secondary user possibly interfering with a primary user. The entire spectrum switching is not required, and thus, we can avoid the service disruption of the on-going communications as much as possible.

A Nulling Anti-Jamming Scheme for the Polyphase Filter Bank-Based Satellite Repeat System (다상 필터 뱅크 기반의 위성 중계시스템을 위한 항재밍 기법의 연구)

  • Oh, Jin-O;Im, Sung-Bin;Ko, Hyun-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.39-47
    • /
    • 2012
  • The combination of the broadband property and the wide area coverage of satellite communications enables high speed transmission. Every user in the region under the satellite beam coverage can tranceiver and one can simultaneously communicate with multiple users. For these reasons, it is one of commendable telecommunication networks for information transfer. Since the satellite communications use open channels, it is likely to cause jamming with unwanted interference signals. In the thesis, APSK (Amplitude Phase Shift Keying) is employed, which is recommended for DVB-S2 due to high-speed transmission and excellent bandwidth efficiency. For obtaining reliable communication under the jamming environments, the communication satellite transponder rests on the polyphase filter bank structure, which enables switching among the subchannels and gain control on each subchannel, resulting in effectively eliminating jamming. Furthermore, the nulling scheme, one of the various anti-jamming approaches, is investigated, in which unwanted jamming signals are eliminated in the frequency domain after passing through the analysis part of the polyphase filter bank. The performance of the nulling scheme is evaluated for tone jamming and partial band jamming in terms of BER and EVM. The simulation results indicate that the nulling scheme improve the BER and EVM performance over the case without any anti-jamming approach.

Impulse Trafficking in Neurons of the Mesencephalic Trigeminal Nucleus

  • Saito, Mitsuru;Kang, Young-Nam
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.113-118
    • /
    • 2006
  • In the primary sensory neuron of the mesencephalic trigeminal nucleus (MTN), the peripheral axon supplies a large number of annulospiral endings surrounding intrafusal fibers encapsulated in single muscle spindles while the central axon sends only a few number of synapses onto single ${\alpha}-motoneurons({\alpha}-MNs)$. Therefore, the ${\alpha}-{\gamma}$ linkage is thought to be very crucial in the jaw-closing movement. Spike activity in a ${\gamma}-motoneuron\;({\gamma}-MN)$ would induce a large number of impulses in single peripheral axons by activating many intrafusal fibers simultaneously, subsequently causing an activation of ${\alpha}-MNs$ in spite of the small number of synapses. Thus, the activity of ${\gamma}-MNs$ may be vital for modulation of jaw-closing movements. Independently of such a spindle activity modulated by ${\gamma}-MNs$, somatic depolarization in MTN neurons is known to trigger the oscillatory spike activity. Nevertheless, the trafficking of these spikes arising from the two distinct sources of MTN neurons is not well understood. In this short review, switching among multiple functional modes of MTN neurons is discussed. Subsequently, it will be discussed which mode can support the ${\alpha}-{\gamma}$ linkage. In our most recent study, simultaneous patch-clamp recordings from the soma and axon hillock revealed a spike-back-propagation from the spike-initiation site in the stem axon to the soma in response to a somatic current pulse. The persistent $Na^+$ current was found to be responsible for the spike-initiation in the stem axon, the activation threshold of which was lower than those of soma spikes. Somatic inputs or impulses arising from the sensory ending, whichever trigger spikes in the stem axon first, would be forwarded through the central axon to the target synapse. We also demonstrated that at hyperpolarized membrane potentials, 4-AP-sensitive $K^+$ current ($IK_{4-AP}$) exerts two opposing effects on spikes depending on their origins; the suppression of spike initiation by increasing the apparent electrotonic distance between the soma and the spike-initiation site, and the facilitation of axonal spike invasion at higher frequencies by decreasing the spike duration and the refractory period. Through this mechanism, the spindle activity caused by ${\gamma}-MNs$ would be safely forwarded to ${\alpha}-MNs$. Thus, soma spikes shaped differentially by this $IK_{4-AP}$ depending on their origins would reflect which one of the two inputs was forwarded to the target synapses.

Tunable Interlayer Exchange Coupling Energy (조절 가능한 층간교환상호작용에 관한 연구)

  • Ha, Seung-Seok;You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.130-135
    • /
    • 2006
  • We theoretically demonstrate that the interlayer exchange coupling (IEC) energy can be manipulated by means of an external bias voltage in a $F_1/NM/F_2/S$$(F_1:ferromagnetic,\;NM:nonmagnetic\;metallic,\;F_2:ferromagnetic,\;S:semiconductor\;layers)$ four-layer system. It is well known that the IEC energy between two ferromagnetic layers separated by nanometer thick nonmagnetic layer depends on the spin-dependence of reflectivity to the $F_1/NM/F_2/S$ four-layer system, where the reflectivities at the interface in $NM/F_2$ interface also depends on $F_2/S$ interface due to the multiple reflection of an electron-like optics. Finally, the IEC energy depends on the spin-dependent electron reflectivity not only at the interfaces of $F_1/NM/F_2$, but also at the interface of $F_2/S$. Naturally the Schottky barrier is formed at the interface between metallic ferromagnetic layer and semiconductor, the Schottky barrier height and thickness can be tailored by an external bias voltage, which causes the change of the spin-dependent reflectivity at $F_2/S$ interface. We show that the IEC energy between two ferromagnetic layers can be controlled by an external bias voltage due ti the electron-optics nature using a simple free-electron-like one-dimensional model.