• Title/Summary/Keyword: multiple solution

Search Result 1,458, Processing Time 0.026 seconds

Vibrations of an axially accelerating, multiple supported flexible beam

  • Kural, S.;Ozkaya, E.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.521-538
    • /
    • 2012
  • In this study, the transverse vibrations of an axially moving flexible beams resting on multiple supports are investigated. The time-dependent velocity is assumed to vary harmonically about a constant mean velocity. Simple-simple, fixed-fixed, simple-simple-simple and fixed-simple-fixed boundary conditions are considered. The equation of motion becomes independent from geometry and material properties and boundary conditions, since equation is expressed in terms of dimensionless quantities. Then the equation is obtained by assuming small flexural rigidity. For this case, the fourth order spatial derivative multiplies a small parameter; the mathematical model converts to a boundary layer type of problem. Perturbation techniques (The Method of Multiple Scales and The Method of Matched Asymptotic Expansions) are applied to the equation of motion to obtain approximate analytical solutions. Outer expansion solution is obtained by using MMS (The Method of Multiple Scales) and it is observed that this solution does not satisfy the boundary conditions for moment and incline. In order to eliminate this problem, inner solutions are obtained by employing a second expansion near the both ends of the flexible beam. Then the outer and the inner expansion solutions are combined to obtain composite solution which approximately satisfying all the boundary conditions. Effects of axial speed and flexural rigidity on first and second natural frequency of system are investigated. And obtained results are compared with older studies.

A Study of Dependent Nonstationary Multiple Sampling Plans (종속적 비평형 다중표본 계획법의 연구)

  • 김원경
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.75-87
    • /
    • 2000
  • In this paper, nonstationary multiple sampling plans are discussed which are difficult to solve by analytical method when there exists dependency between the sample data. The initial solution is found by the sequential sampling plan using the sequential probability ration test. The number of acceptance and rejection in each step of the multiple sampling plan are found by grouping the sequential sampling plan's solution initially. The optimal multiple sampling plans are found by simulation. Four search methods are developed U and the optimum sampling plans satisfying the Type I and Type ll error probabilities. The performance of the sampling plans is measured and their algorithms are also shown. To consider the nonstationary property of the dependent sampling plan, simulation method is used for finding the lot rejection and acceptance probability function. As a numerical example Markov chain model is inspected. Effects of the dependency factor and search methods are compared to analyze the sampling results by changing their parameters.

  • PDF

A Genetic Algorithm for A Cell Formation with Multiple Objectives (다목적 셀 형성을 위한 유전알고리즘)

  • 이준수;정병호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.31-41
    • /
    • 2003
  • This paper deals with a cell formation problem for a set of m-machines and n-processing parts. Generally, a cell formation problem is known as NP-completeness. Hence the cell formation problem with multiple objectives is more difficult than single objective problem. The paper considers multiple objectives; minimize number of intercell movements, minimize intracell workload variation and minimize intercell workload variation. We propose a multiple objective genetic algorithms(MOGA) resolving the mentioned three objectives. The MOGA procedure adopted Pareto optimal solution for selection method for next generation and the concept of Euclidean distance from the ideal and negative ideal solution for fitness test of a individual. As we consider several weights, decision maker will be reflected his consideration by adjusting high weights for important objective. A numerical example is given for a comparative analysis with the results of other research.

An efficient solution algorithm of the optimal load distribution for multiple cooperating robots

  • Choi, Myoung-Hwan;Lee, Hum-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.501-506
    • /
    • 1993
  • An efficient solution algorithm of the optimal load distribution problem with joint torque constraints is presented. Multiple robot system where each robot is rigidly grasping a common object is considered. The optimality criteria used is the sum of weighted norm of the joint torque vectors. The maximum and minimum bounds of each joint torque in arbitrary form are considered as constraints, and the solution that reduces the internal force to zero is obtained. The optimal load distribution problem is formulated as a quadratic optimization problem in R, where I is the number of robots. The general solution can be obtained using any efficient numerial method for quadratic programming, and for dual robot case, the optimal solution is given in a simple analytical form.

  • PDF

A Fuzzy-Goal Programming Approach For Bilevel Linear Multiple Objective Decision Making Problem

  • Arora, S.R.;Gupta, Ritu
    • Management Science and Financial Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-27
    • /
    • 2007
  • This paper presents a fuzzy-goal programming(FGP) approach for Bi-Level Linear Multiple Objective Decision Making(BLL-MODM) problem in a large hierarchical decision making and planning organization. The proposed approach combines the attractive features of both fuzzy set theory and goal programming(GP) for MODM problem. The GP problem has been developed by fixing the weights and aspiration levels for generating pareto-optimal(satisfactory) solution at each level for BLL-MODM problem. The higher level decision maker(HLDM) provides the preferred values of decision vector under his control and bounds of his objective function to direct the lower level decision maker(LLDM) to search for his solution in the right direction. Illustrative numerical example is provided to demonstrate the proposed approach.

Mobile Robot Localization using Ubiquitous Vision System (시각기반 센서 네트워크를 이용한 이동로봇의 위치 추정)

  • Dao, Nguyen Xuan;Kim, Chi-Ho;You, Bum-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2780-2782
    • /
    • 2005
  • In this paper, we present a mobile robot localization solution by using a Ubiquitous Vision System (UVS). The collective information gathered by multiple cameras that are strategically placed has many advantages. For example, aggregation of information from multiple viewpoints reduces the uncertainty about the robots' positions. We construct UVS as a multi-agent system by regarding each vision sensor as one vision agent (VA). Each VA performs target segmentation by color and motion information as well as visual tracking for multiple objects. Our modified identified contractnet (ICN) protocol is used for communication between VAs to coordinate multitask. This protocol raises scalability and modularity of thesystem because of independent number of VAs and needless calibration. Furthermore, the handover between VAs by using ICN is seamless. Experimental results show the robustness of the solution with respect to a widespread area. The performance in indoor environments shows the feasibility of the proposed solution in real-time.

  • PDF

Nonlinear Optimization Method for Multiple Image Registration (다수의 영상 특징점 정합을 위한 비선형 최적화 기법)

  • Ahn, Yang-Keun;Hong, Ji-Man
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.634-639
    • /
    • 2012
  • In this paper, we propose nonlinear optimization method for feature matching from multiple view image. Typical solution of feature matching is by solving linear equation. However this solution has large error due to nonlinearity of image formation model. If typical nonlinear optimization method is used, complexity grows exponentially over the number of features. To make complexity lower, we use sparse Levenberg-Marquardt nonlinear optimization for matching of features over multiple view image.

Optimization of the Number of Antennas for Energy Efficiency in Massive MIMO WPCN (Massive MIMO WPCN에서 에너지 효율 향상을 위한 안테나 수 최적화 기법)

  • Han, Yonggue;Sim, Dongkyu;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • We introduce an optimization of the number of base station antennas in massive multiple-input multiple-output (MIMO) wireless powered communication network (WPCN). We use channel hardening property of massive MIMO system to approximate channel gain in terms of the number of base station antennas. Then, we find an optimal solution by partial differential and obtain a closed form solution by using Lambert-W function. The simulation results show that the approximation and the method of solving the optimization problem are reasonable, and the optimal solution of proposed scheme is almost identical to the optimal number of base station antennas by the exhaustive search method.

A Study on the Qualitative Differences Analysis between Multiple Solutions in Terms of Mathematical Creativity (수학적 창의성 관점에서 다중해법 간의 질적 차이 분석)

  • Baek, Dong-Hyeon;Lee, Kyeong-Hwa
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.481-494
    • /
    • 2017
  • Tasks of multiple solutions have been said to be suitable for the cultivation of mathematical creativity. However, studies on the fact that multiple solutions presented by students are useful or meaningful, and students' thoughts while finding multiple solutions are very short. In this study, we set goals to confirm the qualitative differences among the multiple solutions presented by the students and, if present, from the viewpoint of mathematical creativity. For this reason, after presenting the set of tasks of the two versions to eight mathematically gifted students of the second-grade middle school, we analyzed qualitative differences that appeared among the solutions. In the study, there was a difference among the solution presented first and the solutions presented later, and qualitatively substantial differences in terms of flexibility and creativity. In this regard, it was concluded that the need to account for such qualitative differences in designing and applying multiple solutions should be considered.

Solution Approaches to Multiple Viewpoint Problems: Comparative Analysis using Topographic Features (다중가시점 문제해결을 위한 접근방법: 지형요소를 이용한 비교 분석을 중심으로)

  • Kim, Young-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.84-95
    • /
    • 2005
  • This paper presents solution heuristics to solving optimal multiple-viewpoint location problems that are based on topographic features. The visibility problem is to maximise the viewshed area for a set of viewpoints on digital elevation models (DEM). For this analysis, five areas are selected, and fundamental topographic features (peak, pass, and pit) are extracted from the DEMs of the study areas. To solve the visibility problem, at first, solution approaches based on the characteristics of the topographic features are explored, and then, a benchmark test is undertaken that solution performances of the solution methods, such as computing times, and visible area sizes, are compared with the performances of traditional spatial heuristics. The feasibility of the solution methods, then, are discussed with the benchmark test results. From the analysis, this paper can conclude that fundamental topographic features based solution methods suggest a new sight of visibility analysis approach which did not discuss in traditional algorithmic approaches. Finally, further research avenues are suggested such as exploring more sophisticated selection process of topographic features related to visibility analysis, exploiting systematic methods to extract topographic features, and robust spatial analytical techniques and optimization techniques that enable to use the topographic features effectively.

  • PDF