• Title/Summary/Keyword: multiple site damage

Search Result 26, Processing Time 0.026 seconds

DENTAL CARE FORE MULTIPLE ROOTLESS TEETH : A CASE REPORT (다발성 무치근 치아에 대한 치과적 처치)

  • Lee, Mi-Sook;Lee, Keung-Ho;Choi, Yeong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.316-322
    • /
    • 2001
  • Chemotherapy and radiotherapy used on pediatric oncology patients often causes dentofacial anomalies. Defects noted include tooth and root agenesis, root thinning, root shortening, localized enamel defect and maxillofacial underdevelopment. The effect of radiotherapy usually is confined to the radiation site but the effect of chemotherapy may be more wide spread becuase of its systemic distribution. Many pediatric cancers are treated with a combination of radiation and multiagent chemotherapy. Dental treatment affected by chemotherapy and radiation therapy damage to developing teeth and maxilloface includes retention of teeth, space maintenance, prosthetic considerations, requirements for oral hygiene. The following case related to multiple rootless teeth.

  • PDF

Summative Usability Assessment of Software for Ventilator Central Monitoring System (인공호흡기 중앙감시시스템 소프트웨어의 사용적합성 총괄평가)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.363-376
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.The purpose of this study is to conduct a usability assessment to ensure that ergonomic design has been applied so that the ventilator central monitoring system can improve user satisfaction, efficiency, and safety. The rapid spread of COVID-19, which began in 2019, caused significant damage global medical system. In this situation, the need for a system to monitor multiple patients with ventilators was highlighted as a solution for various problems. Since medical device software is closely related to human life, ensuring their safety and satisfaction is important before their actual deployment in the field. In this study, a total of 21 participants consisting of respiratory staffs conducted usability test according to the use scenarios in the simulated use environment. Nine use scenarios were conducted to derive an average task success rate and opinions on user interface were collected through five-point Likert scale satisfaction evaluation and questionnaire. Participants conducted a total of nine use scenario tasks with an average success rate of 93% and five-point Likert scale satisfaction survey showed a high satisfaction result of 4.7 points on average. Users evaluated that the device would be useful for effectively managing multiple patients with ventilators. However, improvements are required for interfaces associated with task that do not exceed the threshold for task success rate. In addition, even medical devices with sufficient safety and efficiency cannot guarantee absolute safety, so it is suggested to continuously evaluate user feedback even after introducing them to the actual site.

In-Plane Collision Analysis of Perforated Steel Plates (면내 충돌에 의한 유공 강판의 거동 해석)

  • Kang, Dong-Baek;Lee, Ju-Won;Na, Won-Bae;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • In many cases, open-type plate breakwaters use plates with multiple holes; the holes serve as energy dissipaters and weight reducers. Because of the multi-holes configuration, stress concentration should be considered during the design process. Among several design loading conditions, the loads from a possible collision with a man-made vessel or other unexpected events many damage a multi-perforated steel plate. In that case, the structural behavior of a multi-perforated steel plate is quite significant, and is not well understood. This study presents a collision analysis for a multi-perforated steel plate. First, four different perforation topologies (three with circles and one with squares) were selected to investigate the effect of different hole shapes on the structural response. Second, the wave force at a specific site was calculated and loaded onto a steel plate as a static load. The static stresses were used for reference values. Third, two rigid body impacters (cubical & cylindrical) were applied to the steel plates to investigate the transient stress responses. In addition, two different impacting angles ($45^{\circ}\;&\;90^{\circ}$) were selected to investigate the angle effect. From the collision analysis, the significance of the transient stresses was emphasized.

Usefulness of indirect open reduction via a transconjunctival approach for the treatment of nasal bone fracture associated with orbital blowout fracture

  • Kim, Tae Ho;Kang, Seok Joo;Jeon, Seong Pin;Yun, Ji Young;Sun, Hook
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.2
    • /
    • pp.102-107
    • /
    • 2018
  • Background: Nasal fracture and orbital blowout fracture often occur concurrently in cases of midface blunt trauma. Generally, these multiple fractures treatment is surgery, and typically, the nasal bone and orbit are operated on separately. However, we have found that utilizing a transconjunctival approach in patients with concurrent nasal bone fracture and orbital blowout fracture is a useful method. Methods: The participants in the present study included 33 patients who visited the Plastic Surgery outpatient department between March 2014 and March 2017 and underwent surgery for nasal fracture and orbital blowout fracture. We assessed patients' and doctors' satisfaction with surgical outcomes after indirect open reduction via a transconjunctival approach for the treatment of nasal bone fracture with associated orbital blowout fracture. Results: According to the satisfaction scores, both patients and doctors were satisfied with transconjunctival approach. Conclusion: We presented here that our method enables simultaneous operation of nasal fracture accompanied by orbital blowout fracture, rather than treating the two fractures separately, and it allows precise reduction of the nasal fracture by direct visualization of the fracture site without any additional incisions or difficult surgical techniques. Also, by preventing the use of excessive force during reduction, this method can minimize damage to the nasal mucosa, thereby reducing the incidence of nasal bleeding.

Metabolic Topography of Parkinsonism

  • Kim, Jae-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.141-151
    • /
    • 2007
  • Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson diorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkisonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, an assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of parkisonism.

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.