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Parkinson’s disease is one of the most frequent neurodegenerative diseases, which mainly affects the efderly.
Parkinson's disease is often difficult to differentiate from atypical parkinson diorder such as progressive
supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration,
based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The
accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on
treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and
pathogenesis of parkinsonism and to develop new therapeutic strategies. Afthough degeneration of the nigrostriatal
dopamine system results in marked loss of striatal dopamine content in most of the diseases causing
parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkisonism. Since the
regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to
both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary
site of pathology, an assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the
differential diagnosis of parkinsonism and evaluating the pathophysiology of parkisonism. (Nucl Med Mol Imaging

2007;41021141-151)

Introduction

Parkinsonism is described as a symptom complex
manifested by any combination of six cardinal features:
tremor at rest, rigidity, bradykinesia-hypokinesia, flexed
posture, loss of postural reflexes, and the freezing
phenomenon. Idiopathic Parkinson’s disease (IPD) is the
most common neurodegenerative cause of parkinsonism
followed by atypical parkinson disorders (APD) such as
progressive supranuclear palsy (PSP), multiple system
atrophy (MSA), dementia with Lewy body (DLB), and
corticobasal degeneration (CBD).” APD are characterized

by generally more rapidly progressive parkinsonism
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associated with early postural instability, a poor or transient
response to dopaminergic therapy, and additional features
such as supranuclear gaze palsy, early autonomic failure,
pyramidal signs, as well as cerebellar features >

IPD is often difficult to differentiate from APD based on
the clinical findings because of the similarity of phenotypes
and lack of diagnostic markers,z"m The major diagnostic
errors occur when atfempling to differentiate IPD from
some of APD early in their disease course. A diagnosis of
IPD appears to be challenging with a misdiagnosis rate as
high as 20-30% in the early stages.z'g‘m
diagnosis of IPD and APD is not only important for

The accurate

deciding on treatment regimens and providing prognosis,
but also it is critical for studies designed to investigate
etiology and pathogenesis of parkinsonism and to develop
new therapeutic strategies.lS)

Although a definite diagnosis of the parkinsonism can
only be made by a neuropathological examination,

functional neuroimaging techniques have been applied and
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studied to distinguish IPD from other

disorders. Functional neurcimaging studies may assist in a

parkinsonian

differential diagnosis of parkinsonism and provide a means
to investigate the in vivo neurochemical or metaholic
consequences of the degeneration of the nigrostriatal
IPD. Curently, functional

neuroimaging techniques allow imaging of both pre- and

dopaminergic  system in
postsynaptic components of the dopamine system. Since
the core biological pathology in parkinsonism is decreased
dopaminergic neurotransmission in the basal ganglia, these
techniques have been used to characterize in vivo the
different pathologic changes of the parkinsonian disorders

4.1316-18
! Recently,

in attempts to differentiate between them.
PET studies using dopamine D; receptor have shown that
a combing approach of dopamine transporter and De
receptor imaging may help in the differential diagnosis of
parkinsonism,le) For the clinical practice, however, there are
limitations in this approach: 1 has been shown fo
significant overlap in striatal dopamine transporter or
receptor uptake of individual patient with parkinsonism, It
is also uncomfortable for patients to undergo PET scan
twice.

F-18 FDG is a most popular and available radiotracer for
PET and has become a major tool for investigating the
neurodegenerative disease such as Alzheimer's disease and
differentiating parkinsonism.l’w‘m) Although degeneration of
the nigrostriatal dopamine system results in marked loss of
striatal dopamine content in most of the diseases causing
parkinsonism, pathologic  studies revealed different
topographies of the neuronal cell loss.

Studies of the cerebral glucose metabolism with F-18
FDG PET are of considerable interest because the regional
cerebral glucose metabolism is a marker of infegrated local
synaptic activity and as such is sensitive to both direct
neuronal/synaptic damage and secondary functional
disruption at synapses distant from the primary site of

pathology,2l)

Parkinson’s Disease

IPD is characterized by progressive death of dopamine
in the in the

ventrolateral part, resulting in striafal dopamine deficiency

neurons substantia nigra, especially
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most prominent in the putamen.ZZ) This deficiency results
in alterations in the function of cortical-striatal-pallidal-
thalamic-cortical circuits that modulate norrnal movement,
resulting in bradykinesia and rigidity.zg)

The change of glucose metabolism in IPD is well known
but several controversies according to various conditions are
still remained. With respect fo subcortical structures, FDG
PET studies in patients with early IPD have shown
lentiform nucleus hypermetabolism, especially contralateral
to the more affected limb” In contrast, another studies
reported reduced striatal, especially caudate metabolism in
advanced IPD, similar to that reported in progressive
supranuclear palsy.ZS) This metabolic change are paralleled
by changes in striatal D receptor binding, which is
increased in early, untreated disease and decreased in the
advanced treated state. Reductions in caudate metabolism
during the course of IPD probably reflected frontal input
due to direct pathological involvement %"

Regarding cortical metabolism, no significant changes
have been reported in early stages of IPD. In contrast,
widespread reductions of association cortex glucose
metabolism, most prominent in temporoparietal cortex,
have been demonstrated in IPD patients with coexisting
dementia,28'30) a complication that has a prevalence of 18%
to 44% at later stage of disease.™™ This finding of IPD
with dementia is similar to that of Alzheimer disease.
Studies of non-demented IPD covering ranges of disease
duration up fo 29 years have produced conflicting findings.
Some demonstrated significant cortical hypometabolism.SB'M)
while others could not confirm this finding.®™ These
conflicting findings may result from several factors such as
medication, disease duration, and coexisting disease.

Significant relative regional reductions of glucose
metabolism in studies of non-demented IPD patients with
established disease (mean durations between 6 and 8
years) have been demonstrated in various association
cortical regions: occipital,gg‘gs) parietal,gg'w frontal ™ and
temporal (Fig. 1). In both early disease with a mean
duration of 4 years, and in some studies with longer mean
durations of disease (between 6 and 7 years), no significant

19243637 )
' The reason for this

reductions have been reported.
is likely to reflect inclusion of very early cases in these

studies with 1 to 2 years duration of disease, where cortical
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Fig. 1. Seventy-one years old male with Parkinson’s disease. Axial image of F-18 FDG shows mild
cortical hypometabolism. There is no significant hypometabolism in the striatum.

hypometabolism is unlikely. Combining those reported in
the literature suggests that cortical hypometabolism in IPD
parallels disease duration even in the absence of dementia.
Widespread hypometabolism, which is a pathognomomic

28,35
5 also appears to be

feature in IPD with dementia,
common in non-demented patients with advanced IPD.
In particular, frontal hypometabolism seems to be a
characteristic of advanced disease, as it was found only in
the studylg) with the longest mean duration. Further
evidence that frontal lobe dysfunction is a specific finding
in advanced disease comes from PET studies of neuro-
transmission and neuropsychological data. In advanced IPD,
reduced dopamine Dys receptor binding has been
demonstrated in the prefrontal cortex,sg) Conversely, higher
flurodopa uptake has been reported in the frontal cortex of
I[PD patients with better

testing.40) Neuropsychological testing also reveals that

performance in cognitive

frontal lobe functions are specifically impaired at more
advanced stages of disease,""*?

Another factor that might influence cerebral glucose
metabolism in IPD is antiparkinsonian medication. There is
(L-dopa) or

apomorphine can decrease metabolism in cortical and sub

evidence that therapy with levodopa

cortical regions by 2% to 9gp B34V Furthermore, neuropsy-
chological studies have shown that L-dopa treatment can
adversely affect some cognitive functions in IPD. "
Berding et al. reported in IPD, administration of levodopa is
associated with hypometabolism in orbitofrontal cortex: an
area known to be relevant for reversal learning where perfo-

rmance is Lypically impaired after doparninergic treatment

Multiple System Atrophy

MSA is a sporadic adult onset neurodegenerative disease
presenting symptoms and signs of extrapyramidal, cerebellar,
and autonomic dysfunction in various combinations. %
MSA is characterized by neuronal degeneration and gliosis
in the basal ganglia (putamen and globus pallidus), brain
stem (substantia nigra, locus ceruleus, dorsal vagal nuclei,
vestibular nuclei, inferior olives, and pontine nuclei),
cerebellum (cerebellar Purkinje cells), and spinal cord™
Several neurological diseases constitute subgroups of MSA,
including striatonigral degeneration (SND).* Shy-Drager
(SDS),®  and atrophy

syndrome olivopontocerebellar

(OPCA)*
Most patients with MSA manifest cerebellar symptoms
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A B

Fig. 2. Fifty-three years old female with mulfiple system atrophy (cerebellar type). Axial image of F-18
FDG PET and SPM results comparing with age matched nomal controls show  significant
hypormetabolism of pons, cerebellum, medulla and pufamens.

A B

Fig. 3. Sixty-seven years old female with multiple system atrophy (parkinson type). Axial image of F-18
FDG PET and SPM results comparing with age matched nomal controls show  significant
hypometabolism of bilateral putamens (especially posterior portion).

and then develop autonomic or extrapyramidal symptoms. uncommon. Neuropathological studies have shown that
Some patients with MSA initially develop extrapyramidal about 20% of patients clinically diagnosed with IPD may

symptoms and late accompanying autonomic or cerebellar prove at postmortem to have had another

symptoms or both, Even if some clinical features of MSA degenerative disorder such as MSA >

are clearly distinctive from IPD, diagnostic errors are not Previous PET studies have shown a significant
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Fig. 4. Seventy-four years old male with progressive supranuclear palsy. Axial image of F-18 FDG PET and
SPM results comparing with age matched normal controls show significant hypometabolism of midbrain,
bilateral medial frontal corfices, caudate nuclei, and thalami.

widespread reduction of glucose metabolism in the
putamen, cerebellum, and brainstem in not only advanced
but also early MSA,SHG) These findings are consistent with
the neuropathological features of MSA.” Thus, hypome-
tabolism in the putamen, cerebellum, and brain stem
reflects the loss of neurons and synaptic connections in
these sites. (Fig. 2 and 3) However, there is controversy in
the cortical metabolism in MSA. Most of PET studies on
advanced stage of MSA showed the reduction of glucose
metabolism in the cerebral cortex as well”™™ However,
Taniwaki et al. reported no hypometabolism in the cerebral
cortex in the early stage of MSA™ The cerebral cortices
in MSA have been rarely involved on postmortem
pathological examinations. These findings suggest that the
dysfunction in the cerebral cortex appears in the lafe stage
of MSA.

Several studies have reported a strong correlation
between the severity of ataxia and cerebellar hypome-
tabolism in early and advanced stage of MSA.%’S& These
results indicate that the hypometabolism of the cerebellum
is tightly linked to the cerebellar ataxia, Taniwaki et al
also reported a strong correlation between the severity of
autonomic dysfunction and brainstemn hypometabolism in
the early stage of MSA.®™ Since autonomic failure was

known to be associated with cell loss in the spinal cord and

brainstem in the neuropathological study,sg) they suggested
that the hypometabolism in the brainstem is indicative of
the autonomic dysfunction in the early stage of MSA.
However, there is a controversy in the relationship between
the severity of parkinsonism and sfriatal glucose metabolism.
Although decreased metabolism in the striatum was closely
related to the severity of parkinsonism in advanced
MSA.57'60) the severity of parkinsonism did not correlated
with the decline of striatal glucose metabolism in the early

stage of MSA.®

Progressive Supranuclear Palsy

PSP is a late-onset neurodegenerative disease chara-
cterized by supranuclear vertical gaze palsy, postural
instability, rigidity, bulbar dysfunction, and dementia with
variable presence of pyramidal and cerebellar signs.m) PSP
is pathologically characterized by neuronal loss, gliosis, and
neurofibrillary tangles that are most prominent in the basal
ganglia (especially globus pallidus), subthalamic nucleus,
several brainstem nuclei, and the dentate nucleus of the
cerebellum.””’ PSP represents at least 5% of parkisonism.
However, this percentage is probably an underestimate due
to the difficulties in diagnosing this syndrome.

Several studies using F-18 FDG PET have demonstrated
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Fig. 5. Seventy-five years old male with corticobasal ganglionic degeneration. Axial
image of F-18 FDG PET shows asymmetiic hypometabolism of fronfoparietal cortex,
putamen, thalamus and cerebellum.

decreased glucose metabolism not only in the caudate
nucleus, putamen, thalamus, and brainstem, but also in the

6260 particularly in the frontal lobes. This

cerebral cortex,
decrease in cerebral cortical glucose metabolism correlates
with the severity of dementia,@ Hosaka et al. reported
hypometabolism in the lateral and medial frontal lobes,
caudate nucleus, and midbrain as compared with
age-matched healthy controls using voxel based analysis of
FDG PET imaging.sﬁ) QOur experience also confirmed
subcortical hypometabolism of caudate nucleus, thalamus,
and midbrain and cortical hypometabolism (especially
medial frontal cortex) (Fig. 4). These metabolic patterns
may help to differentiate PSP from other atypical
parkinsonism.

In PSP, the basal ganglia and brain stem are the main
loci of pathological changes, while the cortical regions have
only a slightly pathological involvement. Therefore, the
hypometabolism of the cerebral cortex in PSP has
generally been attributed to deafferentiation of the cerebral
cortex from subcortical projections.SZ) Recent pathologic

studies, however, demonstrate neuronal loss and neuro-

146

fibrillary tangles in the cerebral cortex that could contribute
to the cortical hypometabolism by reducing activity of the
terminal fields of local interneurons.m) The current study
also suggests that intrinsic neurons containing benzodia-
zepine/GABAA receptors are lost, primarily in the anterior
cingulated cortex. Foster et al reported that PSP causes
loss of benzodiazepine receptors in the cerebral cortex and
suggested that both loss of intrinsic neurons containing
benzodiazepine receptors and deafferentiation of the
cerebral cortex from distant brain regions contribute to

cerebral cortical hypometabolism in PSP.

Corticobasal Ganglionic Degeneration

CBD is an
syndrome with cortical and basal ganglionic dysfunction.

adult-onset  progressive  parkinsonian
The typical clinical features include asymmetric rigidity,
bradykinesia, tremor, dystonia, myoclonus, dyspraxia, and
cortical sensory loss, along with gait disorder, and
dementia.” Neuropathology is characterized by cortical

neuronal loss and intense astrogliosis with basophilic
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Fig. 6. Sixty-seven years old male with dementia with Lewy body. Axial image of F-18 FDG
PET show significant cortical hypometabolism involving bilateral parietotemporal corfex
and occipital cortex.

argyrophilic and tau-positive inclusions in the substantia
nigra and basal ganglia and sometimes along the
dentate-rubro-thalamic tracts.®

In CBD, asymmetric cortical hypometabolism has been
known as a characteristic pattern of cerebral metabolism
Fig. 5).

metabolic dysfunctioning in paracentral, posterior frontal,
66.69-71

Several studies have reported asymmetric

and inferior pariefal cortices. ) Laureys et al. reported

metabolic decrease in  premotor, primary motor,
supplementary motor, primary sensory, prefrontal, and
parietal associative cortices, and in caudate and thalamus
contralateral to the side of clinical signs in patient with
early stages of CBD.m Hosaka et al also reported
asymmetric parietal hypometabolism using a voxel based
analysis. However, they failed to find a significant decrease
in the thalamus. This difference may be attributable to the

. . . 66
normalization process of voxel based analy51s.”)

Dementia with Lewy Body

DLB is a neurodegenerative disease that is characterized

by a progressive cognitive decline and the presence of
numerous Lewy bodies in the cortical and subcortical brain
region with a variable degree of coexisting Alzheimertype

) According to a recent report, DLB is

pathology.”
considered to be the second most common cause of neuro-
degenerative dementing disorders following Alzheimer’s
disease.73) The clinical criteria for the diagnosis of probable
DLB require the presence of dementia combined with at
least two of the following core features: fluctualing
cognition and levels of consciousness, recurrent visual
hallucinations, and motor features of parkinsonism.
Neuropathological criteria are based on examination of the
following brain regions for the density of Lewy bodies:
subtantia nigra: transentorhinal cortex: cingulate gyrus:
and midtemporal, midfrontal, and inferior parietal
cortices.” There are consensus reports on the clinical and
pathologic diagnostic criteria for DLB, but the accuracy of
the clinical diagnostic criteria has been debated.

Recent studies of F-18 FDG PET have shown the
characteristic patterns of hypometabolism in DLB. Albin et

al. reported an occipital metabolic reduction with autopsy
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confirmed DLB using PET.” Minoshima et al. also

reported  significant metabolic  reductions involving

parietotemporal association, posterior cingulate, frontal
association, and occipital cortices in autopsy confirmed
DLB.”

Occipital metabolic reduction was observed also in
clinically diagnosed PD with dementia.m_m These findings

7980
%8 1 contrast, many

have been confirmed independently.
investigators have observed relatively preserved occipital
metabolism with AD.SI’SZ) These two observations suggest
that occipital metabolic reduction may be a metabolic
signature specific to DLB and can be used to distinguish
the two diseases antemortem (Fig. 6). Occipital metabolic
changes, however, did not correlate with parietotemporal
changes in DLB, suggesting impairment of distinct
neuronal systems.

In DLD, the density of Lewy bodies was reported to be

8380 Although precise

the lowest in the occipital cortex.
comparisons between antemortem metabolic changes and
postmortem pathological findings are difficult due to the
time interval, the expression of Lewy bodies in DLB brains
does not appear to correlate with the distribution of
metabolic changes. This discordance between metabolic
and classical pathologic changes, however, is not unique to
DLB® In AD. classical pathologic changes occur initially
in the transentorhinal cortex®™ In contrast, early metabolic
changes occur in the posterior cingulate cortex and lateral
association cortices,87) which correlate more closely with
immunocytochemical

synaptic alterations revealed by

analysis.gg) Multivariate analysis showed that occipital
metabolic abnormalities were not merely an extension of
parietotemporal pathology indicating an impairment of
distinct neuronal systems. A similar but milder metabolic
reduction in the occipital lobe was observed also in IPD

%353 This may or may not indicate

without dementia,
preclinical evidence of Lewy body dementia. However,
Bohnen et al. reported that occipital reduction correlated
with nigrostriatal dopaminergic functions,BS) and indicated a
possible pathophysiological relationship in impaired saccade
and visual attentional systems.gg) Metabolic reduction in the
visual cortex also coincides clinically with a high prevalence
of visual hallucinations in DLB.73) Abnormalities in primary

visual processing as evidenced by metabolic reduction in
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DLB and IPD, may cause a release of higher visual
association cortices and result in visual hallucinations.gm
Alternatively, visual hallucinations might be caused by
neurochemical changes outside of the primary visual

91
system. )

Conclusion

The clinical differential diagnosis of Parkinson’s disease
and atypical parkinsonism is often complicated by the
presence of signs and symptoms common to both groups,
although parkinsonism involves different pathophysiology in
cortical and subcortical brain structures. Since the regional
cerebral glucose metabolism is a marker of integrated local
synaptic activity and is sensitive to both direct neuronal/
synaptic damage and secondary functional disruption at
synapses distant from the primary site of pathology, an
assessment of the regional cerebral glucose metabolism
with F-18 FDG PET is useful in the differential diagnosis
of parkinsonism and evaluating the pathophysiology of

parkisonism.
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