• 제목/요약/키워드: multiple site damage

검색결과 26건 처리시간 0.025초

Structural damage detection using a multi-stage improved differential evolution algorithm (Numerical and experimental)

  • Seyedpoor, Seyed Mohammad;Norouzi, Eshagh;Ghasemi, Sara
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.235-248
    • /
    • 2018
  • An efficient method utilizing the multi-stage improved differential evolution algorithm (MSIDEA) as an optimization solver is presented here to detect the multiple-damage of structural systems. Natural frequency changes of a structure are considered as a criterion for damage occurrence. The structural damage detection problem is first transmuted into a standard optimization problem dealing with continuous variables, and then the MSIDEA is utilized to solve the optimization problem for finding the site and severity of structural damage. In order to assess the performance of the proposed method for damage identification, an experimental study and two numerical examples with considering measurement noise are considered. All the results demonstrate the effectiveness of the proposed method for accurately determining the site and severity of multiple-damage. Also, the performance of the MSIDEA for damage detection compared to the standard differential evolution algorithm (DEA) is confirmed by test examples.

Cumulative damage modeling for RC girder bridges under probabilistic multiple earthquake scenarios

  • Lang Liu;Hao Luo;Mingming Wang;Yanhang Wang;Changqi Zhao;Nanyue Shi
    • Earthquakes and Structures
    • /
    • 제27권4호
    • /
    • pp.303-315
    • /
    • 2024
  • This study proposes a comprehensive methodology for estimating accumulative damage of bridge structures under multiple seismic excitations, in the framework of site-specific probabilistic hazard analysis. Specifically, a typical earthquake-prone region in China is chosen to perform probabilistic seismic hazard analysis (PSHA) to find the mean annual rate (MAR) of ground motion intensity at a specific level, based on which, a mass of ground motion observations is selected to construct random earthquake sequences with various number of shocks. Then, nonlinear time history analysis is implemented on the finite element (FE) model of a RC girder bridge at the site of interest, to investigate structural responses under different earthquake sequences, and to develop predictive model for cumulative damage computation, in which, a scalar seismic intensity measure (IM) is adopted and its performance in damage prediction is discussed by an experimental column. Furthermore, a mathematic model is established to calculate occurrence probability of earthquakes with various number of shocks, based on PSHA and homogenous Poisson random process, and a modified cumulative damage indicator is proposed, accounting for probabilistic occurrence of various earthquake scenarios. At end, the applicability of the proposed methodology to main shock and aftershock scenarios is validated, and characteristics of damage accumulation under different multiple earthquake scenarios are discussed.

Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model

  • Kim, JungHoon;Zi, Goangseup;Van, Son-Nguyen;Jeong, MinChul;Kong, JungSik;Kim, Minsung
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.443-457
    • /
    • 2011
  • The loss of strength in a structure as a result of cyclic loads over a period of life time is an important phenomenon for the life-cycle analysis. Service loads are accentuated at the areas of stress concentration, mainly at the connection of components. Structural components unavoidably are affected by defects such as surface scratches, surface roughness and weld defects of random sizes, which usually occur during the manufacturing and handling process. These defects are shown to have an important effect on the fatigue life of the structural components by promoting crack initiation sites. The value of equivalent initial flaw size (EIFS) is calculated by using the back extrapolation technique and the Paris law of fatigue crack growth from results of fatigue tests. We try to analyze the effect of EIFS distribution in a multiple site damage (MSD) specimen by using the extended finite element method (XFEM). For the analysis, fatigue tests were conducted on the centrally-cracked specimens and MSD specimens.

A novel heuristic search algorithm for optimization with application to structural damage identification

  • Nobahari, Mehdi;Ghasemi, Mohammad Reza;Shabakhty, Naser
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.449-461
    • /
    • 2017
  • One of the most recent methods of structural damage identification is using the difference between structures responses after and before damage occurrence. To do this one can formulate the damage detection problem as an inverse optimization problem where the extents of damage in each element are considered as the optimizations variables. To optimize the objective function, heuristic methods such as GA, PSO etc. are widely utilized. In this paper, inspired by animals such as bat, dolphin, oilbird, shrew etc. that use echolocation for finding food, a new and efficient method, called Echolocation Search Algorithm (ESA), is proposed to properly identify the site and extent of multiple damage cases in structural systems. Numerical results show that the proposed method can reliably determine the location and severity of multiple damage cases in structural systems.

Multi-unit Level 1 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Kim, Dong-San;Han, Sang Hoon;Park, Jin Hee;Lim, Ho-Gon;Kim, Jung Han
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1217-1233
    • /
    • 2018
  • Following a surge of interest in multi-unit risk in the last few years, many recent studies have suggested methods for multi-unit probabilistic safety assessment (MUPSA) and addressed several related aspects. Most of the existing studies though focused on two-unit nuclear power plant (NPP) sites or used rather simplified probabilistic safety assessment (PSA) models to demonstrate the proposed approaches. When considering an NPP site with three or more units, some approaches are inapplicable or yield very conservative results. Since the number of such sites is increasing, there is a strong need to develop and validate practical approaches to the related MUPSA. This article provides several detailed approaches that are applicable to multi-unit Level 1 PSA for sites with up to six or more reactor units. To validate the approaches, a multi-unit Level 1 PSA model is developed and the site core damage frequency is estimated for each of four representative multi-unit initiators, as well as for the case of a simultaneous occurrence of independent single-unit initiators in multiple units. For this purpose, an NPP site with six identical OPR-1000 units is considered, with full-scale Level 1 PSA models for a specific OPR-1000 plant used as the base single-unit models.

FASTENER HOLE 모델의 대한 예비압입 적용 연구 (A Study on the Application of Pre-Indentation Technique for Fastener Hole Model)

  • 황정선;조환기
    • 한국항공우주학회지
    • /
    • 제31권9호
    • /
    • pp.26-31
    • /
    • 2003
  • 노후 항공기는 일반적으로 다중손상(MSD)이라고 하는 폭넓게 분포된 피로손상을 내포하고 있다. 2024-T3 알루미늄합금과 같은 연성재료에 있어서 다중손상은 전통적인 파괴역학에서 예측할 수 있는 것보다 낮은 운용수명을 예측하게 만드는 것으로 알려져 있다. 본 논문에서는 다중손상을 갖는 평판 구조물을 모델링한 Fastener Hole을 갖는 2024-T3 알루미늄합금 판재로 제작된 Hole/Slot type M(T) 시편에 예입압입을 적용한 후 피로시험을 수행하여 피로균열 성장지연에 의한 운용수명 증가에 대한 효과를 연구하였다. 예비압입을 적용한 시편은 파단에 이르는 사이클수가 최소 10배에서 최대 40배까지 증가하였으며, 일정진폭 하중의 최대값을 증가시킴에 따라서 그 효과가 감소함을 보여주었다. 또한, 압입에 의한 균열성장지연 메커니즘은 균열진전경로가 압입자국에 들어서면서 균열성장률이 감소하기 시작하며 압입자국의 중심을 지나면서 최소균열성장률 상태로 일정한 시간동안 균열성장이 정체됨으로써 피로수명이 연장됨을 밝혔다.

Multi-unit PSA based risk evaluation framework for utilizing cross-tie systems for nuclear power plants

  • Jong Woo Park;Ho-gon Lim;Jae Young Yoon;Seong Woo Kang
    • Nuclear Engineering and Technology
    • /
    • 제56권10호
    • /
    • pp.4296-4306
    • /
    • 2024
  • The Fukushima accident showed that the safety of multiple nuclear power plants (NPPs) at the same site could be jeopardized simultaneously. Since then, many studies have focused on developing strategies to prevent the spread of multi-unit accidents, with numerous countries establishing strategies to use mobile equipment. However, mobile equipment strategies are inherently accompanied by a high degree of uncertainty regarding operation success and duration because multiple organizations and personnel interact in various ways during multi-unit accident situations. Furthermore, supplementing current fixed equipment with additional mobile equipment requires extra resources. Therefore, cross-tie strategies that use currently installed fixed equipment can provide additional means to manage site risk with relatively few additional costs. This study proposes a multi-unit probabilistic safety assessment-based risk evaluation framework for utilizing cross-tie systems in NPPs and a modeling methodology to quantify the effectiveness of the cross-tie strategies. A case study was conducted to evaluate the risk reduction from using cross-tie strategies for emergency diesel generators and alternate AC diesel generators, which are power systems utilized in multi-unit loss of offsite power initiating events. It is expected that the developed framework and methodology can be utilized for other types of cross-tie strategies as well.

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • 방사성폐기물학회지
    • /
    • 제19권4호
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Assessment of maximum liquefaction distance using soft computing approaches

  • Kishan Kumar;Pijush Samui;Shiva S. Choudhary
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.395-418
    • /
    • 2024
  • The epicentral region of earthquakes is typically where liquefaction-related damage takes place. To determine the maximum distance, such as maximum epicentral distance (Re), maximum fault distance (Rf), or maximum hypocentral distance (Rh), at which an earthquake can inflict damage, given its magnitude, this study, using a recently updated global liquefaction database, multiple ML models are built to predict the limiting distances (Re, Rf, or Rh) required for an earthquake of a given magnitude to cause damage. Four machine learning models LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), CNN (Convolutional Neural Network), and XGB (Extreme Gradient Boosting) are developed using the Python programming language. All four proposed ML models performed better than empirical models for limiting distance assessment. Among these models, the XGB model outperformed all the models. In order to determine how well the suggested models can predict limiting distances, a number of statistical parameters have been studied. To compare the accuracy of the proposed models, rank analysis, error matrix, and Taylor diagram have been developed. The ML models proposed in this paper are more robust than other current models and may be used to assess the minimal energy of a liquefaction disaster caused by an earthquake or to estimate the maximum distance of a liquefied site provided an earthquake in rapid disaster mapping.

복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가 (Visible Assessment of Earthquake-induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas)

  • 김한샘;선창국
    • 한국지진공학회논문집
    • /
    • 제20권3호
    • /
    • pp.171-180
    • /
    • 2016
  • Earthquake event keeps increasing every year, and the recent cases of earthquake hazards invoke the necessity of seismic study in Korea, as geotechnical earthquake hazards, such as strong ground motion, liquefaction and landslides, are a significant threat to structures in industrial hub areas including coastal facilities. In this study, systemized framework of integrated assessment of earthquake-induced geotechnical hazard was established using advanced geospatial database. And a visible simulation of the framework was specifically conducted at two coastal facility areas in Incheon. First, the geospatial-grid information in the 3D domain were constructed with geostatistical interpolation method composed of multiple geospatial coverage mapping and 3D integration of geo-layer construction considering spatial outliers and geotechnical uncertainty. Second, the behavior of site-specific seismic responses were assessed by incorporating the depth to bedrock, mean shear wave velocity of the upper 30 m, and characteristic site period based on the geospatial-grid. Third, the normalized correlations between rock-outcrop accelerations and the maximum accelerations of each grid were determined considering the site-specific seismic response characteristics. Fourth, the potential damage due to liquefaction was estimated by combining the geospatial-grid and accelerations correlation grid based on the simplified liquefaction potential index evaluation method.