• Title/Summary/Keyword: multiple setups

Search Result 20, Processing Time 0.025 seconds

Comparison of methods for the proportion of true null hypotheses in microarray studies

  • Kang, Joonsung
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2020
  • We consider estimating the proportion of true null hypotheses in multiple testing problems. A traditional multiple testing rate, family-wise error rate is too conservative and old to control type I error in multiple testing setups; however, false discovery rate (FDR) has received significant attention in many research areas such as GWAS data, FMRI data, and signal processing. Identify differentially expressed genes in microarray studies involves estimating the proportion of true null hypotheses in FDR procedures. However, we need to account for unknown dependence structures among genes in microarray data in order to estimate the proportion of true null hypothesis since the genuine dependence structure of microarray data is unknown. We compare various procedures in simulation data and real microarray data. We consider a hidden Markov model for simulated data with dependency. Cai procedure (2007) and a sliding linear model procedure (2011) have a relatively smaller bias and standard errors, being more proper for estimating the proportion of true null hypotheses in simulated data under various setups. Real data analysis shows that 5 estimation procedures among 9 procedures have almost similar values of the estimated proportion of true null hypotheses in microarray data.

A novel Metropolis-within-Gibbs sampler for Bayesian model updating using modal data based on dynamic reduction

  • Ayan Das;Raj Purohit Kiran;Sahil Bansal
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The paper presents a Bayesian Finite element (FE) model updating methodology by utilizing modal data. The dynamic condensation technique is adopted in this work to reduce the full system model to a smaller model version such that the degrees of freedom (DOFs) in the reduced model correspond to the observed DOFs, which facilitates the model updating procedure without any mode-matching. The present work considers both the MPV and the covariance matrix of the modal parameters as the modal data. Besides, the modal data identified from multiple setups is considered for the model updating procedure, keeping in view of the realistic scenario of inability of limited number of sensors to measure the response of all the interested DOFs of a large structure. A relationship is established between the modal data and structural parameters based on the eigensystem equation through the introduction of additional uncertain parameters in the form of modal frequencies and partial mode shapes. A novel sampling strategy known as the Metropolis-within-Gibbs (MWG) sampler is proposed to sample from the posterior Probability Density Function (PDF). The effectiveness of the proposed approach is demonstrated by considering both simulated and experimental examples.

3D scanner's measurement path establishment automation by robot simulator

  • Jang, Pyung-Su;Lee, Sang-Heon;Chang, Min-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2179-2182
    • /
    • 2005
  • Recently, optical 3D scanners are frequently used for inspection of parts, assembly and manufacturing tooling. One of the advantages is being able to measure a large area fast and accurately. Owing to recent advances in high-resolution image sensing technology, high power illumination technology, and high speed microprocessors, the accuracy and resolution of optical 3D scanners are being improved rapidly. In order to measure the entire geometry of objects, multiple scans have to be performed in various setups by moving either the objects or the scanner. This paper introduces novel methods to measure the entire geometry of objects by automatically changing the setups and then aligning the scanned data in a single coordinate system.

  • PDF

A Discount Price Schedule Based on Supplier's Profit Function

  • Kim, Kap-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.1
    • /
    • pp.113-126
    • /
    • 1992
  • It is discussed how a supplier should design a quantity discount pricing schedule for multiple buyers. It is emphasized that nor only the supplier's surplus but also each buyer's surplus resultant from quantity discount should be considered in designing price schedule. It is shown that if the supplier's quantity pricing schedule is based on his/her profit function, each buyer's surplus may be maximized. And it is also shown that when the supplier's main benefit comes from the reduced number of setups, the incremental discount schedule satisfies the requirement. Formulas to determine values of parameters of the incremental discount schedule are provided.

  • PDF

Omni-directional Visual-LiDAR SLAM for Multi-Camera System (다중 카메라 시스템을 위한 전방위 Visual-LiDAR SLAM)

  • Javed, Zeeshan;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.353-358
    • /
    • 2022
  • Due to the limited field of view of the pinhole camera, there is a lack of stability and accuracy in camera pose estimation applications such as visual SLAM. Nowadays, multiple-camera setups and large field of cameras are used to solve such issues. However, a multiple-camera system increases the computation complexity of the algorithm. Therefore, in multiple camera-assisted visual simultaneous localization and mapping (vSLAM) the multi-view tracking algorithm is proposed that can be used to balance the budget of the features in tracking and local mapping. The proposed algorithm is based on PanoSLAM architecture with a panoramic camera model. To avoid the scale issue 3D LiDAR is fused with omnidirectional camera setup. The depth is directly estimated from 3D LiDAR and the remaining features are triangulated from pose information. To validate the method, we collected a dataset from the outdoor environment and performed extensive experiments. The accuracy was measured by the absolute trajectory error which shows comparable robustness in various environments.

A Resonant Characteristics Analysis and Suppression Strategy for Multiple Parallel Grid-connected Inverters with LCL Filter

  • Sun, Jian-jun;Hu, Wei;Zhou, Hui;Jiang, Yi-ming;Zha, Xiao-ming
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1483-1493
    • /
    • 2016
  • Multiple parallel inverters have multiple resonant frequencies that are influenced by many factors. This often results in stability and power quality problems. This paper develops a multiple input multiple output model of grid-connected inverter systems using a closed-loop transfer function. The influence factors of the resonant characteristics are analyzed with the developed model. The analysis results show that the resonant frequency is closely related to the number, type and composition ratio of the parallel inverters. To suppress resonance, a scheme based on virtual impedance is presented, where the virtual impedance is emulated in the vicinity of the resonance frequency. The proposed scheme needs one inverter with virtual impedance control, which reduces the design complexity of the other inverter controllers. Simulation and experimental tests are carried out on two single phase converter-based setups. The results validate the correctness of the model, the analytical results and the resonant suppressing scheme.

Preprocessing based Scheduling for Multi-Site Constraint Resources (전처리 방식의 복수지역 제약공정 스케줄링)

  • Hong, Min-Sun;Rim, Suk-Chul;Noh, Seung-J.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.1
    • /
    • pp.117-129
    • /
    • 2008
  • Make-to-order manufacturers with multiple plants at multiple sites need to have the ability to quickly determine which plant will produce which customer order to meet the due date and minimize the transportation cost from the plants to the customer. Balancing the work loads and minimizing setups and make-span are also of great concern. Solving such scheduling problems usually takes a long time. We propose a new approach, which we call 'preprocessing', for resolving such complex problems. In preprocessing scheme, a 'good' a priori schedule is prepared and maintained using unconfirmed order information. Upon the confirmation of orders. the preprocessed schedule is quickly modified to obtain the final schedule. We present a preprocessing solution algorithm for multi-site constraint scheduling problem (MSCSP) using genetic algorithm; and conduct computational experiments to evaluate the performance of the algorithm.

Spectrum Management Models for Cognitive Radios

  • Kaur, Prabhjot;Khosla, Arun;Uddin, Moin
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.222-227
    • /
    • 2013
  • This paper presents an analytical framework for dynamic spectrum allocation in cognitive radio networks. We propose a distributed queuing based Markovian model each for single channel and multiple channels access for a contending user. Knowledge about spectrum mobility is one of the most challenging problems in both these setups. To solve this, we consider probabilistic channel availability in case of licensed channel detection for single channel allocation, while variable data rates are considered using channel aggregation technique in the multiple channel access model. These models are designed for a centralized architecture to enable dynamic spectrum allocation and are compared on the basis of access latency and service duration.

An optimal security management framework for backhaul-aware 5G- Vehicle to Everything (V2X)

  • Vishal Sharma;Jiyoon Kim;Yongho Ko;Ilsun You;Jung Taek Seo
    • Journal of Internet Technology
    • /
    • v.21 no.1
    • /
    • pp.249-264
    • /
    • 2020
  • Cellular (C) setups facilitate the connectivity amongst the devices with better provisioning of services to its users. Vehicular networks are one of the representative setups that aim at expanding their functionalities by using the available cellular systems like Long Term Evolution (LTE)-based Evolved Universal Terrestrial Radio Access Network (E-UTRAN) as well as the upcoming Fifth Generation (5G)-based functional architecture. The vehicular networks include Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), Vehicle to Pedestrian (V2P) and Vehicle to Network (V2N), all of which are referred to as Vehicle to Everything (V2X). 5G has dominated the vehicular network and most of the upcoming research is motivated towards the fully functional utilization of 5G-V2X. Despite that, credential management and edge-initiated security are yet to be resolved under 5G-V2X. To further understand the issue, this paper presents security management as a principle of sustainability and key-management. The performance tradeoff is evaluated with the key-updates required to maintain a secure connection between the vehicles and the 5G-terminals. The proposed approach aims at the utilization of high-speed mmWave-based backhaul for enhancing the security operations between the core and the sub-divided functions at the edge of the network through a dual security management framework. The evaluations are conducted using numerical simulations, which help to understand the impact on the sustainability of connections as well as identification of the fail-safe points for secure and fast operations. Furthermore, the evaluations help to follow the multiple tradeoffs of security and performance based on the metrics like mandatory key updates, the range of operations and the probability of connectivity.

Low-Noise Preamplifier Design for Underwater Electric Field Sensors using Chopper stabilized Operational Amplifiers and Multiple Matched Transistors (초퍼 연산증폭기와 다수의 정합 트랜지스터를 이용한 수중 전기장 센서용 저잡음 전치 증폭기 설계)

  • Bae, Ki-Woong;Yang, Chang-Seob;Han, Seung-Hwan;Jeoung, Sang-Myung;Chung, Hyun-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.120-124
    • /
    • 2022
  • With advancements in underwater stealth technology for naval vessels, new sensor configurations for detecting targets have been attracting increased attention. Latest underwater mines adopt multiple sensor configurations that include electric field sensors to detect targets and to help acquire accurate ignition time. An underwater electric field sensor consists of a pair of electrodes, signal processing unit, and preamplifier. For detecting underwater electric fields, the preamplifier requires low-noise amplification at ultra-low frequency bands. In this paper, the specific requirements for low-noise preamplifiers are discussed along with the experimental results of various setups of matched transistors and chopper stabilized operational amplifiers. The results showed that noise characteristics at ultra-low frequency bands were affected significantly by the voltage noise density of the chopper amplifier and the number of matched transistors used for differential amplification. The fabricated preamplifier was operated within normal design parameters, which was verified by testing its gain, phase, and linearity.