• Title/Summary/Keyword: multiple sensor fusion

Search Result 92, Processing Time 0.028 seconds

Cooperative Localization in 2D for Multiple Mobile Robots by Optimal Fusion of Odometer and Inexpensive GPS data (다중 이동 로봇의 주행 계와 저가 GPS 데이터의 최적 융합을 통한 2차원 공간에서의 위치 추정)

  • Jo, Kyoung-Hwan;Lee, Ji-Hong;Jang, Choul-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • We propose a optimal fusion method for localization of multiple robots utilizing correlation between GPS on each robot in common workspace. Each mobile robot in group collects position data from each odometer and GPS receiver and shares the position data with other robots. Then each robot utilizes position data of other robot for obtaining more precise estimation of own position. Because GPS data errors in common workspace have a close correlation, they contribute to improve localization accuracy of all robots in group. In this paper, we simulate proposed optimal fusion method of odometer and GPS through virtual robots and position data.

  • PDF

Precise attitude determination strategy for spacecraft based on information fusion of attitude sensors: Gyros/GPS/Star-sensor

  • Mao, Xinyuan;Du, Xiaojing;Fang, Hui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The rigorous requirements of modern spacecraft missions necessitate a precise attitude determination strategy. This paper mainly researches that, based on three space-borne attitude sensors: 3-axis rate gyros, 3-antenna GPS receiver and star-sensor. To obtain global attitude estimation after an information fusion process, a feedback-involved Federated Kalman Filter (FKF), consisting of two subsystem Kalman filters (Gyros/GPS and Gyros/Star-sensor), is established. In these filters, the state equation is implemented according to the spacecraft's kinematic attitude model, while the residual error models of GPS and star-sensor observed attitude are utilized, to establish two observation equations, respectively. Taking the sensors' different update rates into account, these two subsystem filters are conducted under a variable step size state prediction method. To improve the fault tolerant capacity of the attitude determination system, this paper designs malfunction warning factors, based on the principle of ${\chi}^2$ residual verification. Mathematical simulation indicates that the information fusion strategy overwhelms the disadvantages of each sensor, acquiring global attitude estimation with precision at a 2-arcsecs level. Although a subsystem encounters malfunction, FKF still reaches precise and stable accuracy. In this process, malfunction warning factors advice malfunctions correctly and effectively.

Rao-Blackwellized Multiple Model Particle Filter Data Fusion algorithm (Rao-Blackwellized Multiple Model Particle Filter자료융합 알고리즘)

  • Kim, Do-Hyeung
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.556-561
    • /
    • 2011
  • It is generally known that particle filters can produce consistent target tracking performance in comparison to the Kalman filter for non-linear and non-Gaussian systems. In this paper, I propose a Rao-Blackwellized multiple model particle filter(RBMMPF) to enhance computational efficiency of the particle filters as well as to reduce sensitivity of modeling. Despite that the Rao-Blackwellized particle filter needs less particles than general particle filter, it has a similar tracking performance with a less computational load. Comparison results for performance is listed for the using single sensor information RBMMPF and using multisensor data fusion RBMMPF.

Multiple Sensor Fusion Algorithm for the Altitude Estimation of Deep-Sea UUV, HEMIRE (심해무인잠수정 해미래의 고도정보 추정을 위한 다중센서융합 알고리즘)

  • Kim, Dug-Jin;Kim, Ki-Hun;Lee, Pan-Mook;Cho, Sung-Kwon;Park, Yeoun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1202-1208
    • /
    • 2008
  • This paper represents the multiple sensor fusion algorithm for the deep-sea unmanned underwater vehicles (UUV), composed of a remotely operated vehicle (ROV) 'Hemire' and a depressor 'Henuvy'. The performance of underwater positioning system usually highly depend on that of acoustic sensors such as ultra short base line(USBL), long base line(LBL) and altimeter. A practical sensor fusion algorithm is proposed in the sense of a moving window concept. The performance of the proposed algorithm can be observed by applying the algorithm to the Hemire sea trial data which was measured at the East Sea.

Sensor Network System to Operate Multiple Autonomous Transport Platform (다수의 무인운송플랫폼 운용을 위한 센서 네트워크 시스템)

  • Nam, Choon-Sung;Gim, Su-Hyeon;Lee, Suk-Han;Shin, Dong-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.706-712
    • /
    • 2012
  • This paper presents a sensor network and operation for multiple autonomous navigation platform and transport service. Multiple platform navigate with inside sensors and outside sensors while acquiring and process some useful information. Each platform communicates each other by navigational information through central main server. Efficient sensor network systems are considered for the scenario which some passengers call the service and the vehicle accomplish its transport service by transporting each caller to the destination by autonomous manners. In the scenario, all vehicles perform a role of sensor system to the central server and the server handles each information and integrate with faster procedure in the wireless 3G network.

Evidential Fusion of Multsensor Multichannel Imagery

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2006
  • This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.

Federated Information Mode-Matched Filters in ACC Environment

  • Kim Yong-Shik;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.

New Filtering Method for Reducing Registration Error of Distributed Sensors (분산된 센서들의 Registration 오차를 줄이기 위한 새로운 필터링 방법)

  • Kim, Yong-Shik;Lee, Jae-Hoon;Do, Hyun-Min;Kim, Bong-Keun;Tanikawa, Tamio;Ohba, Kohtaro;Lee, Ghang;Yun, Seok-Heon
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.176-185
    • /
    • 2008
  • In this paper, new filtering method for sensor registration is provided to estimate and correct error of registration parameters in multiple sensor environments. Sensor registration is based on filtering method to estimate registration parameters in multiple sensor environments. Accuracy of sensor registration can increase performance of data fusion method selected. Due to various error sources, the sensor registration has registration errors recognized as multiple objects even though multiple sensors are tracking one object. In order to estimate the error parameter, new nonlinear information filtering method is developed using minimum mean square error estimation. Instead of linearization of nonlinear function like an extended Kalman filter, information estimation through unscented prediction is used. The proposed method enables to reduce estimation error without a computation of the Jacobian matrix in case that measurement dimension is large. A computer simulation is carried out to evaluate the proposed filtering method with an extended Kalman filter.

  • PDF

Uncertainty Fusion of Sensory Information Using Fuzzy Numbers

  • Park, Sangwook;Lee, C. S. George
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1001-1004
    • /
    • 1993
  • The Multisensor Fusion Problem (MFP) deals with the methodologies involved in effectively combining together homogeneous or non-homegeneous information obtained from multiple redundant or disparate sensors in order to perform a task more accurately, efficiently, and reliably. The inherent uncertainties in the sensory information are represented using Fuzzy Numbers, -numbers, and the Uncertainty-Reductive Fusion Technique (URFT) is introduced to combine the multiple sensory information into one consensus -number. The MFP is formulated from the Information Theory perspective where sensors are viewed as information sources with a fixed output alphabet and systems are modeled as a network of information processing and processing and propagating channels. The performance of the URFT is compared with other fusion techniques in solving the 3-Sensor Problem.

  • PDF

Global Map Building and Navigation of Mobile Robot Based on Ultrasonic Sensor Data Fusion

  • Kang, Shin-Chul;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.198-204
    • /
    • 2007
  • In mobile robotics, ultrasonic sensors became standard devices for collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. The global map building based on multi-sensor data fusion is applied for recognition an obstacle free path from a starting position to a known goal region, and simultaneously build a map of straight line segment geometric primitives based on the application of the Hough transform from the actual and noisy sonar data. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, Hough transform, since there exist several recent thorough books and review paper on this paper. Experimental results with a real Pioneer DX2 mobile robot will demonstrate the effectiveness of the discussed methods.