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Abstract

The Multisensor Fusion Problem (MFP) deals with the
methodologies involved in effectively combining together ho-
mogeneous or non-homogeneous information obtained from
multiple redundant or disparate sensors in order to perform
a task more accurately, efficiently, and reliably. The inher-
ent uncertainties in the sensory information are represented
using Fuzzy Numbers, F-numbers, and the Uncertainty-
Reductive Fusion Technique (URFT) is introduced to com-
bine the multiple sensory information into one consensus
F-number. The MFP is formulated from the Information
Theory perspective where sensors are viewed as information
sources with a fixed output alphabet and systems are mod-
eled as a network of information processing and propagating
channels. The performance of the URFT is compared with
other fusion techniques in solving the 3-Sensor Problem.

1 The Multisensor Fusion Problem

The Multisensor Fusion Problem (MFP) deals with the
methodologies involved in effectively combining together ho-
mogeneous or non-homogeneous information obtained from
multiple redundant or disparate sensors in order to perform
a task more accurately, efficiently, and reliably. A single
sensor is never sufficient enough to provide the complete
reliable information needed by an intelligent system. Mul-
tiple sensors are needed in order to confirm each other’s
measurements, thus increasing the reliability of the sensory
information, and to provide a more complete information
about the world by combining partial information from each
of the sensors. MFP involves choosing an uncertainty repre-
sentation for the sensory information, deciding on the level
of the information processing hierarchy at which the fusion
process is to take place, maintaining the kinematic and fea-
ture correspondence among the sensory information, and
finally fusing the multiple sensory information into one rep-
resentative consensus information.

The inherent uncertainties in the sensory information,
which can arise due to noise, limitations of the sensor,
changes in the environment, or changes in the system it-
self, can generally be represented in 4 different ways [7] [8]:
no uncertainty representation, probabilistic representation,
representation using belief measures, and possibilistic rep-
resentation. We use Fuzzy numbers and possibility distri-
butions [3] [17] to represent the sensory information. When
a sensor provides a measurement m about a feature f of the
world, the sensor is actually providing a linguistic proposi-
tion of the form “the feature f is about m”. A possibility
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distribution 7(z) can be determined to represent the degree
of possibility that any z in the referential set X might actu-
ally be the true value f. Using Dubois and Prade’s definition
of the LR-type Fuzzy number [4] [18], the mean-value m; of
the F-number F; represents the actual sensor measurement
and the spread o; of the F-number represents the uncer-
tainty level of the F-number (see the next section for the
explanation).

The fusion process can be implemented at the data level,
the feature level, the knowledge level or the decision level
in the information processing hierarchy. The performance
of the fusion operation is dependent on the fusion level cho-
sen. We perform the fusion at the feature level where the
fusion process is divided into two fusion subprocesses which
can run in parallel: the mean-value fusion process gm(-) and
the uncertainty-fusion process g,(-). Together they form the
overall fusion process G(-) which is called the Uncertainty-
Reductive Fusion Technique (URFT). There is a need to fuse
the uncertainties inherent in the sensory information as well
as the measurement values in order to provide some sort of
confidence or reliability measure about the information the
system is processing. Any decision made or action taken
by the system can be based on these confidence measures
which would increase the dependability and the correctness

of the decisions or actions.

The Multisensor Fusion Problem can be formally stated as:

Given a sheaf of Fuzzy-numbers, Fo, Fy, ..., Fn,
which constitutes a sensory information vector
for one feature f, determine the consensus Fuzzy-
number f‘c which “best” represents the informa-
tion conveyed by all the N Fuzzy-numbers and
accurately estimates the true feature value.

‘We approach the MFP from the Information Theory per-
spective [1] [6] where the sensors are modeled as informa-
tion sources with a fixed output alphabet I’ and systems are
modeled as networks of information processing and propa-
gating channels. Before the fusion process, the sheaf of N
F-numbers are at the maximum uncertainty level. However,
as the overlapping or confirmative information between the
F-numbers is identified and subtracted from the initial un-
certainty level, the uncertainty of the overall system de-
creases until all the provided information are used and the
minimum attainable uncertainty level is reached. The un-
certainty of the system after the fusion process yields the
uncertainty level of the consensus F-number.
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Preliminary Concepts and Definitions

The measure of uncertainty associated with a F-number
is determined using Higashi and Klir’s U-uncertainty mea-
sure [9] [11]. U-uncertainty measure is a measure of possi-
bilistic uncertainty which is derived from Harteley’s Mea-
sure of Information and is based more on the concepts of
the number of choices rather than probabilities. The inher-
ent uncertainty associated with sensory measurements are
based on imprecision rather than randomness or entropy;
therefore, the U-uncertainty measure is ideal in determin-
ing the uncertainty level of a F-number representing sensory
information.

1
wi = UF) = 3255 = pisallogldy, | M)
i=1
where p; (j = 1,2,...,1) is the ordered possibility distribution
with pi4q1 = 0, py = 1 and p; > pj;1. Note also that p; is
equivalent to the a-levels for the a-level sets A,.

Some properties of the U-uncertainty measure which are
relevant _to our formulation are: 1) shift invariance, that
is, U(n(z)) = U(x(z + k)) for some keR (this means that the
uncertainty measure is independent of the mean-value m of
the F-number and only dependent on the spread « of the
F-number) and 2) monotonicity, that is, U(m(z)) < U(7(z))
if and only if m(z) < 7y(z) for all z ¢ X (this means that
U(F,) < U(F) if and only if a1 < a3).

Definition 1.1 The confidence level ¢; of ¢ F-number F; is defined
as the reciprocal of the uncertainty level,

¢ = 1/u; 2)

A measure of confidence or reliability is more appropriate
in basing decisions upon than the measure of uncertainty
since the term uncertainty is too vague and too broad.

2 Uncertainty Fusion

The fusion of the N F-numbers into a consensus F-number
involves two fusion subprocesses g,,(-) and g,(-) where the
former fuses the mean-values of the F-numbers, which is
equivalent to the fusion of the measurement values of the
N semnsors, and the latter fuses the uncertainty levels or the
confidence levels of the N sensors. The overall fusion process
G(') is called the Uncertainty-Reductive Fusion Technique
(URFT) and it is designed to meet the following general
Fusion Criteria:

1. The fusion subprocesses g,,(-) and g,(-) must be convex.

2. If U(F)) < U(F,), then d(m¢,m,) < d(mc, m3),
where d(-) = distance measure between two real num-
bers.

3. lim,,_.m G(Fl,ﬁg, ey F~n) = f N
where f is the true value of the feature being measured.

The interpretation of the Fusion Criteria is as follows :
1) the aggregation functions must be convex in order to en-
sure the convergence of the algorithm, 2) the mean-value
of the consensus F-number should be closest to the mean-
value of the most confident F-number, and 3) the consen-
sus should be an unbiased and consistent estimate of the

measured feature f. The meaning of criterion 3 can be
better understood by dividing it into two separate limits:
limy, o0 gm(m1, m2,...,my) = f and lim, oo gul(oy, @2,.. ., 0p) =
0.

The mean-value fusion is performed using the Linear
Opinion Pool with confidence weighting,

N
gm(mi,ma, ..., mN) =mc = 3 wim (3)
i=1

where the weights w; = ¢; and Zix w; = 1.

The fusion of the uncertainty levels is not so straight
forward since determining the amount of overlapping infor-
mation among the N F-numbers is very complicated and
in some sense non-standard. The use of conventional tech-
niques such as fuzzy integrals or the simple t-norm minimum
operator are not satisfactory because the confidence of the
resulting solution is not updated. Instead of identifying and
determining all the overlapping information among the N
F-numbers a more global and macro approach is taken.

Definition 2.1 Let UO(F~1, f‘z) be the measure of overlapping infor-
mation or redundant information provided by two F-numbers Fy and
Fy. Then Fy and Fy are said to be “confirmative” or are said lo
provide “overlapping” information if Uo(F~1, Fy) > 0.

The Information Transmission [11] is defined as,
T(Fy, Fy) = U(Fy) + U(Fy) — Uo(Fy, Fy). (4)

which is equal to the uncertainty of the consensus F-number
when F, and F, are fused together.

U(Fe) = U(G(Fy, Fp)) = UR) + U(F2) - Uo(F, F).  (5)

Note that U(F;) + U(F3y) is the uncertainty of the system
before the fusion process and so,

Uinir = U(Fy) + U(F) (6)

Therefore, if there is no overlapping information, that is,
Uo() is equal to zero, then U(ﬁc) = Uinie. I Uof(:) > 0,
then this means there is some overlapping information be-
tween the two F-numbers so U(i‘c) < Uinit and if Up(:) pro-
vides maximum overlapping information, then U (fc) = Umin
which is determined using the Principle of Maximum Con-
firmation.

Let A be the degree of confirmation or overlap. For no
confirmative information, A = 0 and for maximum confirma-
tive information, A\ = 1. Therefore, as A varies from 0 to
1, the measure of overlapping information among all the N
F-numbers varies from 0 to [Umaz — Umin]. Therefore, the
overlapping information measure is given by,

UO(FI,F%n-yF.N):A(Umaz" min)- (7)

There are a lot of different ways to define the degree of
confirmation, ), such as using similarity measures or cardi-
nality measures; however, in conforming with the Informa-
tion Theory approach, we define it as,

A=U(m*my*...x7N)/Ures (8)

where * is the algebraic product operator and U,.; is the
normalizing factor which is equal to the the uncertainty of
the product 7 * 73 % ... » 7x for the maximum confirmative
state.
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Proposition 2.1 (The Principle of Mazimum Confirmation) For a
sheaf of N F-numbers, the marimum confirmation occurs when my

=Mz = ... = mMN.

The uncertainty update or the uncertainty of the consen-
sus F-number is given by,

U(Fc) = Uinit ~ A[Umaz — Umin] (9

or
U(Fe) = (1 = MWinit + AUnmin (10)

where Uinit = Umaz = Z-‘ix U(f‘,) and Umin = Urey. This is
simply a linear weighting between Un4r and Upin.

The same concepts are extended to the fusion of
more than 2 F-numbers; however, unlike the fusion of 2
F.numbers, as the number of F-numbers increases the num-
ber of possible combinations of pairs or groups of F-numbers
providing overlapping information grows exponentially. So
it is almost impossible and inefficient to try to identify and
quantize all the overlapping information provided by the N
F-numbers.

2.1 Generation of the F-numbers

As a precursor to the fusion process, there are 3 stages of
pre-processing which need to be performed. First, the sen-
sor measuremenis need to be fuzzified; in other words, a
F-number needs to be associated with each sensor’s output.
Second, the F-numbers need to be transformedin order to
maintain the kinematic correspondence between the differ-
ent sensors which means that all the sensory information
need to be referenced from a common reference frame. The
feature correspondence also needs to be checked in order to
make sure that only the information about the same feature
is identified and fused together. Finally, the fusible informa-
tion and the unfusible information need to be separated in
order for the fusion process to be robust and accurate. This
section illustrates the ideas behind the first pre-processing
stage and the next section deals with the third stage. The
second stage of information correspondence is a research
area of its own right; refer to [5] [15] for the kinematic cor-
respondence problem in sensor fusion and papers concerning
feature matching in stereo imaging or image registration in
computer vision for the feature correspondence problem.
There are basically 3 different ways of fuzzifying sen-
sory information. The first is to use probabilistic data. The
spread of the F-number can be defined to be twice the stan-
dard deviation of the sensor [12] or some sample measure-
ments can be taken by the sensor to transform the prob-
abilistic data to membership functions or possibility dis-
tributions [2] [16]. The second method is more subjective
in nature where a reliability index is associated with each
of the sensors’ outputs depending on the reliability or the
accuracy of each physical sensor. This method is justifi-
able since the mean-value fusion is a Linear Opinion Pool
with reliability weighting. The third method is a method
developed and currently being researched by the authors.
The method uses Maximum Uncertainty Possibility Distri-
butions (MUPD) which are determined using Entropy or
Uncertainty Optimization Principles [10] and uses fusion
techniques to learn the membership functions,that is, to

self-adapt to a representative membership function as sam-
ple measurements are taken. This is a concept of dynamic
generation of F-numbers.

2.2 Clustering and the Fusibility Condition

All N of the F-numbers cannot be fused together at all
times. The multisensor fusion system is designed to fuse
all the N sensory information; however, due to the unpre-
dictability of the world, only a subset M of the sheaf of
F-numbers can be fused at any given time. The Fusibility
Condition is used to distinguish between fusible and un-
fusible sets of information.

Definition 2.2 (Fusibility Condition) The sheaf of N F-numbers
are said Lo be fusible if and only if Uc < min[U(#1),U(Fy),...,U(FN)).

The Fusibility Condition is an extension of Swinburne’s
Theory of Confirmation [13] and it states that we should
only fuse multiple information together if the resultant con-
sensus F-number is more reliable than any of the input
F-numbers. If the fusion process yields a consensus which is
less reliable than one of the input F-numbers, then there is
no advantage in fusing the multiple information over simply
picking the minimum uncertainty input F-number as the
consensus F-number. URFT is designed to reduce the over-
all uxxcertaint;of the system or at least not introduce more
uncertainty into the system than before the fusion process,
so the Fusibility Condition is an integral part of the URFT.
Another reason for clustering the set of N F-numbers into
fusible and unfusible elements is to ensure that “faulty” in-
formation, that is, the information from faulty sensors, is
not fused to form the consensus value.

Let U(Fmin) = min[U(F)),U(F),...,U(Fn)]. The decision
to fuse or not to fuse is given by

Fuse if and only if A > [Umoz = U(Fmin))/[Umaz — Umin].
The actual clustering algorithm is :

1. Let M = N and place all the N F-numbers in the fuse-
list. Try fusing the N F-numbers. If fusible, then done.

2. Let M=M ~ 1. If M = 1, then done.
Or else, take out the first element of the fuse-list and
and classify it as an unfused element. Try fusing the
remaining M F-numbers in the fuse-list. For each of the
M elements in the fuse-list, replace it with the unfused
element and perform the fusion for the new set of M
F-numbers.

3. If some set of M F-numbers are fusible, then choose

the set which produced the minimum U(F;) value and
place the elements of this set in the fuse-list and the
remaining one unfused element in the conflict-list. Then
done.
Or else, choose the set of M F-numbers which pro-
duced the largest measure of overlapping information
and place the element of this set in the fuse-list and
the remaining unfused element in the conflict-list. Go
to step 2.
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f = true value

Collectively Confirmative

Correct Majority

Distributed Opinions

Incorrect Maijority

Figure 1: The 3-Sensor Problem

3 Simulation Results

The performance of the fusion technique can be evaluated
by comparing the technique with other existing fusion meth-
ods. The problem we will consider is the 3-sensor Problem
which is stated as follows : let s;, 55, and s3 be the 3 sen-
sors which provide outputs m;, m,, and mj, respectively.
Let the uncertainty of the sensors be represented using the
variances o = 0.1, 02 = 0.2, and 02 = 0.3 or the uncertainty
uy = 1.977 (a; = 0.5), u; = 2.929 (a, = 1.0), and u3 = 3.903
(a3 = 2.0). Let f = 5.0 be the true value of the feature being
measured. The 3-sensor problem has 4 cases to consider.

Case 1. Collectively Confirmative
my = my = m3 = 5.0
Case II. Correct Majority
m =49 my =52m3 =1T7.5
Case IIl. Incorrect Majority
m; = 4.9 my; = 3.4 m3 = 3.7
Case IV. Distributed Opinion
m; = 5.0 my = 4.0 mzg = 6.0

The fusion techniques considered are :
. Mean filter
. Majority filter
. Durrante-Whyte’s Bayesian Updating [5]
. URFT

W W N =

Table 1: Comparison of Fusion Techniques

case method m. confidence | method me confidence
I 1 50 3 5.0 s02=0.055
! 2 50 4 50 u. =1679
I 1 587 3 50 s2=0.067
i 2 520 4 502 u, =222
w140 3 352 520120
1 2 37 4 353 y, =2782
vV 1 50 3 491 s2=0.055
IV 2 50 4 533 u.=3588

4 Conclusion

The use of F-numbers to represent semnsory information
proved to be very effective. The need for fusing uncer-
tainties associated with sensor measurements was illustrated
and the performance of the proposed Uncertainty-Reductive
Fusion Technique was shown compared to other fusion tech-
niques.
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