• Title/Summary/Keyword: multiple response surface

Search Result 184, Processing Time 0.029 seconds

Development of water circulation status estimation model by using multiple linear regression analysis of urban characteristic factors (도시특성 요인의 다중선형회귀 분석을 이용한 물순환상태추정모델 개발)

  • Kim, Youngran;Hwang, Seonghwan;Lee, Yunsun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.503-512
    • /
    • 2020
  • Identifying the water circulation status is one of the indispensable processes for watershed management in an urban area. Recently, various water circulation models have been developed to simulate the water circulation, but it takes a lot of time and cost to make a water circulation model that could adapt the characteristics of the watershed. This paper aims to develop a water circulation state estimation model that could easily calculate the status of water circulation in an urban watershed by using multiple linear regression analysis. The study watershed is a watershed in Seoul that applied the impermeable area ratio in 1962 and 2000. And, It was divided into 73 watersheds in order to consider changes in water circulation status according to the urban characteristic factors. The input data of the SHER(Similar Hydrologic Element Response) model, a water circulation model, were used as data for the urban characteristic factors of each watershed. A total of seven factors were considered as urban characteristic factors. Those factors included annual precipitation, watershed area, average land-surface slope, impervious surface ratio, coefficient of saturated permeability, hydraulic gradient of groundwater surface, and length of contact line with downstream block. With significance probabilities (or p-values) of 0.05 and below, all five models showed significant results in estimating the water circulation status such as the surface runoff rate and the evapotranspiration rate. The model that was applied all seven urban characteristics factors, can calculate the most similar results such as the existing water circulation model. The water circulation estimation model developed in this study is not only useful to simply estimate the water circulation status of ungauged watersheds but can also provide data for parameter calibration and validation.

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.

Optimal Design of the Flexure Mounts for Satellite Camera by Using Design of Experiments (실험계획법을 이용한 인공위성 주반사경 플렉셔 마운트의 최적 설계)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.693-700
    • /
    • 2008
  • The primary mirror system in a satellite camera is an opto-mechanically coupled system for a reason that optical and mechanical behaviors are intricately interactive. In order to enhance the opto-mechanical performance of the primary mirror system, opto-mechanical behaviors should be thoroughly investigated by using various analysis procedures such as elastic, thermo-elastic, optical and eigenvalue analysis. In this paper, optimal design of the bipod flexure mounts for high opto-mechanical performance is performed. Optomechanical performances considered in this paper are RMS wavefront error under the gravity and thermal loading conditions and 1st natural frequency of the mirror system. The procedures of the flexure mounts design based on design of experiments and statistics is as follows. The experiments for opto-mechanical analysis are constructed based on the tables of orthogonal arrays and analysis of each experiment is carried out. In order to deal with the multiple opto-mechanical properties, MADM (Multiple-attribute decision making) is employed. From the analysis results, the critical design variables of the flexure mounts which have dominant influences on opto-mechanical performance are determined through analysis of variance and F-test. The regression model in terms of the critical design variables is constructed based on the response surfaceanalysis. Then the critical design variables are optimized from the regression model by using SQP algorithm. Opto-mechanical performance of the optimal bipod flexure mounts is verified through analysis.

Substantial Enhancement of the Response and Sensing Speed of WO3 Nanotubes Toward NO2 Gas by Au-functionalization

  • Ko, Hyunsung;Park, Sangbo;Hong, Taeseop;Park, Sunghoon;Lee, Chongmu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.369.1-369.1
    • /
    • 2014
  • Au-functionalized $WO_3$ nanotubes were synthesized using ZnO nanowire templates. Transmission electron microscopy revealed the Au nanoparticles on the outer surface of a typical $WO_3$ nanotube ranged from 5 to 25 nm. The multiple networked Au-functionalized $WO_3$ nanotube sensors showed responses of 820-3, 924% in the $NO_2$ concentration range of 1-5 ppm at $300^{\circ}C$. These responses were approximately 5-12 fold higher than those observed for pristine $WO_3$ nanotube sensors over the same $NO_2$ concentration range. A model describing the gas sensing mechanism of Au-functionalized $WO_3$ nanotubes is discussed.

  • PDF

A Study on the Overlay Welding Process Optimization of GTAW by Double Torch (GTAW Double Torch의 육성용접 공정최적화에 관한 연구)

  • Lim, Byung-Chul;Son, Young-San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.73-78
    • /
    • 2016
  • In this study, GTAW was carried out on austenitic STS316 stainless steel. Overlay welding with the stellite-base filler metal was implemented using a double torch. The response variable was calculated on the measured Vickers hardness for process optimization using the Taguchi method and its response variable was then analyzed about effect on overlay welding characteristics. The optimal process design by the Taguchi method is extremely effective in the overlay welding process for the multiple response variables. In addition, the effects of contribution rate about each response variable was analyzed easily. The conditions of the optimal process were 105A, 18V, pre-heat treatment at $200^{\circ}C$, and post weld heat treatment at $100^{\circ}C$. The Vickers hardness of the specimens produced under the optimal condition of GTAW by the double torch was 8.19% higher than that by a single torch.

Conjunctive Management Considering Stream-Aquifer Systems for Drought Season (지표수 지하수 연계운영에 의한 갈수기 지표수-수자원관리)

  • Cha, Kee-Uk;Kim, Woo-Gu;Shin, Young-Rho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.389-394
    • /
    • 2008
  • The purpose of this research was to develop a methodology to determine whether conjunctive surface water and groundwater management could significantly reduce deficits in a river basin with a relatively limited alluvial aquifer. The Geum River basin is one of major river basins in South Korea. The upper region of the Geum River basin is typical of many river basins in Korea where the shape of river basin is narrow with small alluvial aquifer depths from 10m to 20m and where most of the groundwater pumped comes quickly from the steamflow. The basin has two surface reservoirs, Daecheong and Yongdam. The most recent reservoir, Yongdam, provides water to a trans-basin diversion, and therefore reduces the water resources available in the Geum River basin. After the completion of Yongdam reservoir, the reduced water supply in the Geum basin resulted in increasing conflicts between downstream water needs and required instream flows, particularly during the low flow season. Historically, the operation of groundwater pumping has had limited control and is administered separately from surface water diversions. Given the limited size of the alluvial aquifer, it is apparent that groundwater pumping is essentially taking its water from the stream. Therefore, the operation of the surface water withdrawals and groundwater pumping must be considered together. The major component of the conjunction water management in this study is a goal-programmin g based optimization model that simultaneously considers surface water withdrawals, groundwater pumping and instream flow requirements. A 10-day time step is used in the model. The interactions between groundwater pumping and the stream are handled through the use of response and lag coefficients. The impacts of pumping on streamflow are considered for multiple time periods. The model is formulated as a linear goal-programming problem that is solved with the commercial LINGO optimization software package.

  • PDF

Variations of Soil Temperatures in Winter and Spring at a High Elevation Area (Boulder, Colorado)

  • Lee, Jin-Yong;Lim, Hyoun Soo;Yoon, Ho Il;Kim, Poongsung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.16-25
    • /
    • 2015
  • The City of Boulder is located at an average elevation of 1,655 m (5,430 feet), the foothills of the Rocky Mountains in Colorado. Its daily air temperature is much varying and snow is very frequent and heavy even in spring. This paper examines characteristics of shallow (surface and depth = 10 cm) soil temperatures measured from January to May 2015 in the high elevation city Boulder, Colorado. The surface soil temperature quickly responded to the air temperature with the strongest periodicity of 1 day while the subsurface soil temperatures showed a less correlation and delayed response with that. The short-time Fourier of the soil temperatures uncovered their very low frequencies characteristics in heavy snow days while it revealed high frequencies of their variations in warm spring season. The daily minimum air temperature exhibited high cross-correlations with the soil temperatures without lags unlike the maximum air temperature, which is derived from its higher and longer auto-correlation and stronger spectrums of low frequencies than the maximum air temperature. The snow depth showed an inverse relationship with the soil temperature variations due to snow's low thermal conductivity and high albedo. Multiple regression for the soil temperatures using the air temperature and snow depth presented its predicting possibility of them even though the multiple r2 of the regression is not that much satisfactory (r2 = 0.35-0.64).

Optimization of Synthesis Condition of Monolithic Sorbent Using Response Surface Methodology (반응 표면 분석법을 이용한 일체형 흡착제의 합성 조건 최적화)

  • Park, Ha Eun;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.299-304
    • /
    • 2013
  • A 17-run Box-Behnken design was used to optimize the synthesis conditions of a monolithic sorbent. The effects of the amount of monomer (mL), crosslink (mL) and porogen (mL) were investigated. The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The adjusted coefficient of determination ($R^2$) of the model was 0.9915. The probability value (p < 0.0001) demonstrated a high significance for the regression model. A mean amount of polymer as 2120.15 mg was produced under the following optimum synthesis conditions: the optimized volumes of monomer, crosslink and porogen are 0.30, 1.40, and 1.47 mL, respectively. This was in good agreement with the predicted model value.

Efficient Use of Lamb Waves and Their Wavelet Coefficients for Damage Detection of Steel Plates (강 구조물의 손상 검색을 위한 램 웨이브와 웨이브렛 계수의 효율적인 사용)

  • 박승희;윤정방;노용래
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.429-436
    • /
    • 2004
  • For the in-situ health monitoring of critical members in civil infra-structures, ultrasonic guided Lamb waves-based non-destructive evaluation (NDE) is very suitable. However, a chief drawback of the Lamb wave techniques is that multiple modes exist at all frequencies and the modes are generally dispersive, which means that the received signals may be very complicated. To overcome these complications, selective transmitting and receiving of a single A/sub 0/ mode within a frequency range can be adopted. Furthermore, a wavelet technique can be utilized to decompose the Lamb wave response into wavelet coefficients as a tool for signal processing. The changes in the Lamb waves interacting with damages in the steel plates are successfully characterized by this wavelet technique, through the amplitude change of the wavelet coefficients. In this paper, the feasibility of detecting a line crack on the surface of a steel plate and loosened bolts in a joint steel specimen using the Lamb waves and the wavelet technique is investigated.

  • PDF

Evaluation of Surrogate Models for Shape Optimization of Compressor Blades

  • Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.367-370
    • /
    • 2006
  • Performances of multiple surrogate models are evaluated in a turbomachinery blade shape optimization. The basic models, i.e., Response Surface Approximation, Kriging and Radial Basis Neural Network models as well as weighted average models are tested for shape optimization. Global data based errors for each surrogates are used to calculate the weights. These weights are multiplied with the respective surrogates to get the final weighted average models. The design points are selected using three level fractional factorial D-optimal designs. The present approach can help address the multi-objective design on a rational basis with quantifiable cost-benefit analysis.

  • PDF