• Title/Summary/Keyword: multiple objective genetic algorithm(MOGA)

Search Result 5, Processing Time 0.018 seconds

Multi-Objective Micro-Genetic Algorithm for Multicast Routing (멀티캐스트 라우팅을 위한 다목적 마이크로-유전자 알고리즘)

  • Jun, Sung-Hwa;Han, Chi-Geun
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.504-514
    • /
    • 2007
  • The multicast routing problem lies in the composition of a multicast routing tree including a source node and multiple destinations. There is a trade-off relationship between cost and delay, and the multicast routing problem of optimizing these two conditions at the same time is a difficult problem to solve and it belongs to a multi-objective optimization problem (MOOP). A multi-objective genetic algorithm (MOGA) is efficient to solve MOOP. A micro-genetic algorithm(${\mu}GA$) is a genetic algorithm with a very small population and a reinitialization process, and it is faster than a simple genetic algorithm (SGA). We propose a multi-objective micro-genetic algorithm (MO${\mu}GA$) that combines a MOGA and a ${\mu}GA$ to find optimal solutions (Pareto optimal solutions) of multicast routing problems. Computational results of a MO${\mu}GA$ show fast convergence and give better solutions for the same amount of computation than a MOGA.

A Genetic Algorithm for A Cell Formation with Multiple Objectives (다목적 셀 형성을 위한 유전알고리즘)

  • 이준수;정병호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.31-41
    • /
    • 2003
  • This paper deals with a cell formation problem for a set of m-machines and n-processing parts. Generally, a cell formation problem is known as NP-completeness. Hence the cell formation problem with multiple objectives is more difficult than single objective problem. The paper considers multiple objectives; minimize number of intercell movements, minimize intracell workload variation and minimize intercell workload variation. We propose a multiple objective genetic algorithms(MOGA) resolving the mentioned three objectives. The MOGA procedure adopted Pareto optimal solution for selection method for next generation and the concept of Euclidean distance from the ideal and negative ideal solution for fitness test of a individual. As we consider several weights, decision maker will be reflected his consideration by adjusting high weights for important objective. A numerical example is given for a comparative analysis with the results of other research.

System Decomposition Technique using Multiple Objective Genetic Algorithm (다목적 유전알고리듬을 이용한 시스템 분해 기법)

  • Park, Hyung-Wook;Kim, Min-Soo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.170-175
    • /
    • 2001
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several multidisciplinary analysis subsystems (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multiple objective genetic algorithm (MOGA), and a sample test case is presented to show the effects of optimizing the sequence with MOGA.

  • PDF

Seismic Response Control of Building Structures using Semiactive Smart Dampers (준능동 스마트 감쇠기를 사용한 빌딩구조물의 지진응답제어)

  • Kim Hyun-Su;Raschke Paul N.;Lee Dang-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.451-458
    • /
    • 2006
  • The goal of many researchers in the field of structural engineering is to reduce both damage to building structures and discomfort of their inhabitants during strong motion seismic events. The present paper reports on analytical work conducted with this aim in mind as a prior research of experimental study. A four-story, 6.4 m tall, laboratory model of a building is employed as a example structure. The laboratory structure has graphite epoxy columns and each floor is equipped with a chevron brace that serves to resist inter-story drift with the installation of a magnetorheological (MR) damper. An artificial excitation has been generated with a robust range of seismic characteristics. A series of numerical simulations demonstrates that an optimized fuzzy controller is capable of robust performance for a variety of seismic base motions. Optimization of the fuzzy controller is achieved using multi-objective genetic algorithm(MOGA), i.e. NSGA-II. Multiple objective functions are used in order to reduce both peak and root-means-squared displacement and accelerations at the floor levels of the building.

  • PDF

Multi-Criteria Topology Design of Truss Structures

  • Yang, Young-Soon;Ruy, Won-Sun
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2001
  • This paper presents a novel design approach that could generate structural design alternatives having different topologies and then, select the optimum structure from them with simulataneously determining its optimum design variables related to geometry and the member size subjected to the multiple objective design environments. For this purpose, a specialized genetic algorithm, called StrGA_DeAl + MOGA, which can handle the design alternatives and multi-criteria problems very effectively, is developed for the optimal structural design. To validate the developed method, method, plain truss design problems are considered as illustrative example. To begin with, some possible topological of the truss structure are suggested based on the stability criterion that should be satisfied under the given loading condition. Then, with the consideration of the given multi-criteria, several different topology forms are selected as design alternatives for the second step of the conceptual design process. Based on the chosen topolgy of truss structures, the sizing or shaping optimization process starts to determine the optimum design parameters. Ten-bar truss problems are given in the paper to confirm the above concept and methodology.

  • PDF