• Title/Summary/Keyword: multiple mobile robots system

Search Result 69, Processing Time 0.033 seconds

A MULTIPLE AUTONOMOUS ROBOTS SYSTEM -HARDWARE AND COMMUNICATION

  • Johari, W.A.;Nohira, M.;Yamauchi, Y.;Ishikawa, S.;Kato, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.485-490
    • /
    • 1992
  • This paper describes a hardware structure and a communication system of a multiple autonomous robots system. Many studies have been devoted to the development of a single autonomous robot. It is, however, also necessary to investigate decentralized multiple autonomous robots system in order to make wider use of such robots. We have been studying a multiple autonomous robots system employing two mobile robots. In this paper, problems are overviewed on the developed multiple autonomous robots system from the viewpoint of hardware and communication, and an improved system is presented, which employs a new control strategy of a mobile robot and realizes reliable data communication between host computers.

  • PDF

Time-Efficient Trajectory Planning Algorithms for Multiple Mobile Robots in Nuclear/Chemical Reconnaissance System (화방 정찰 체계에서의 다수의 이동 로봇을 위한 시간 효율적인 경로 계획 알고리즘에 대한 연구)

  • Kim, Jae-Sung;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1047-1055
    • /
    • 2009
  • Since nuclear and chemical materials could damage people and disturb battlefield missions in a wide region, nuclear/chemical reconnaissance systems utilizing multiple mobile robots are highly desirable for rapid and safe reconnaissance. In this paper, we design a nuclear/chemical reconnaissance system including mobile robots. Also we propose time-efficient trajectory planning algorithms using grid coverage and contour finding methods for reconnaissance operation. For grid coverage, we performed in analysis on time consumption for various trajectory patterns generated by straight lines and arcs. We proposed BCF (Bounded Contour Finding) and BCFEP (Bounded Contour Finding with Ellipse Prediction) algorithms for contour finding. With these grid coverage and contour finding algorithms, we suggest trajectory planning algorithms for single, two or four mobile robots. Various simulations reveal that the proposed algorithms improve time-efficiency in nuclear/chemical reconnaissance missions in the given area. Also we conduct basic experiments using a commercial mobile robot and verify the time efficiency of the proposed contour finding algorithms.

Priority-based Teleoperation System for Differential-drive Mobile Robots (차동 구동형 모바일 로봇의 효율적인 운용을 위한 우선순위 기반의 원격제어 시스템)

  • Lee, Dong-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • In situations where mobile robots are operated either by autonomous systems or human operators, such as smart factories, priority-based teleoperation is crucial for the multiple operators with different priority to take over the right of the robot control without conflict. This paper proposes a priority-based teleoperation system for multiple operators to control the robots. This paper also introduces an efficient joystick-based robot control command generation algorithm for differential-drive mobile robots. The proposed system is implemented with ROS (Robot Operating System) and embedded control boards, and is applied to Pioneer 3AT mobile robot platform. The experimental results demonstrate the effectiveness of the proposed joystick control command algorithm and the priority-based control input selection.

Power System and Drive-Train for Omni-Directional Autonomous Mobile Robots with Multiple Energy Storage Units

  • Ghaderi, Ahmad;Nassiraei, Amir A.F;Sanada, Atsushi;Ishii, Kazuo;Godler, Ivan
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.291-300
    • /
    • 2008
  • In this paper power system and drive-train for omni-directional autonomous mobile robots with multiple energy storage units are presented. Because in proposed system, which is implemented in soccer robots, the ability of power flow control from of multiple separated energy storage units and speed control for each motor are combined, these robots can be derived by more than one power source. This capability, allow robot to diversify its energy source by employing hybrid power sources. In this research Lithium ion polymer batteries have been used for main and auxiliary energy storage units because of their high power and energy densities. And to protect them against deep discharge, over current and short circuit, a protection circuit was designed. The other parts of our robot power system are DC-DC converters and kicker circuit. The simulation and experimental results show proposed scheme and extracted equations are valid and energy management and speed control can be achieved properly using this method. The filed experiments show robot mobility functions to perform the requested motion is enough and it has a high maneuverability in the field.

Integrating Ant Colony Clustering Method to a Multi-Robot System Using Mobile Agents

  • Kambayashi, Yasushi;Ugajin, Masataka;Sato, Osamu;Tsujimura, Yasuhiro;Yamachi, Hidemi;Takimoto, Munehiro;Yamamoto, Hisashi
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.181-193
    • /
    • 2009
  • This paper presents a framework for controlling mobile multiple robots connected by communication networks. This framework provides novel methods to control coordinated systems using mobile agents. The combination of the mobile agent and mobile multiple robots opens a new horizon of efficient use of mobile robot resources. Instead of physical movement of multiple robots, mobile software agents can migrate from one robot to another so that they can minimize energy consumption in aggregation. The imaginary application is making "carts," such as found in large airports, intelligent. Travelers pick up carts at designated points but leave them arbitrary places. It is a considerable task to re-collect them. It is, therefore, desirable that intelligent carts (intelligent robots) draw themselves together automatically. Simple implementation may be making each cart has a designated assembly point, and when they are free, automatically return to those points. It is easy to implement, but some carts have to travel very long way back to their own assembly point, even though it is located close to some other assembly points. It consumes too much unnecessary energy so that the carts have to have expensive batteries. In order to ameliorate the situation, we employ mobile software agents to locate robots scattered in a field, e.g. an airport, and make them autonomously determine their moving behaviors by using a clustering algorithm based on the Ant Colony Optimization (ACO). ACO is the swarm intelligence-based methods, and a multi-agent system that exploit artificial stigmergy for the solution of combinatorial optimization problems. Preliminary experiments have provided a favorable result. In this paper, we focus on the implementation of the controlling mechanism of the multi-robots using the mobile agents.

A Recognition System for Multiple Mobile Robots Using RFID System in Smart Space (스마트 스페이스에서 RFID 시스템을 이용한 다수 이동로봇 인식 시스템)

  • Tak, Myung-Hwan;Yeom, Dong-Hae;Cho, Young-Jo;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2103-2107
    • /
    • 2010
  • This paper deals with the recognition of multiple mobile robots equipped with RFID tag. In the case that the number of robots recognized by each RFID reader is larger than that of allocated slots, the clashing recognition occurs. And, in the case that the total number of robots recognized by all RFID reader is larger than that of real robots, the repetitious recognition occurs. We employ the dynamic frame slot allocation by using the ALOHA algorithm to prevent the clashing recognition and estimate the number of robots by using the received signal strength indication to prevent the repetitious recognition. The numerical experiment shows the reliability and the efficiency of the proposed method.

Path Planning of Swarm Mobile Robots Using Firefly Algorithm (Firefly Algorithm을 이용한 군집 이동 로봇의 경로 계획)

  • Kim, Hue-Chan;Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.435-441
    • /
    • 2013
  • A swarm robot system consists of with multiple mobile robots, each of which is called an agent. Each agent interacts with others and cooperates for a given task and a given environment. For the swarm robotic system, the loss of the entire work capability by malfunction or damage to a single robot is relatively small and replacement and repair of the robot is less costly. So, it is suitable to perform more complex tasks. The essential component for a swarm robotic system is an inter-robot collaboration strategy for teamwork. Recently, the swarm intelligence theory is applied to robotic system domain as a new framework of collective robotic system design. In this paper, FA (Firefly Algorithm) which is based on firefly's reaction to the lights of other fireflies and their social behavior is employed to optimize the group behavior of multiple robots. The main application of the firefly algorithm is performed on path planning of swarm mobile robots and its effectiveness is verified by simulations under various conditions.

A reinforcement learning-based method for the cooperative control of mobile robots (강화 학습에 의한 소형 자율 이동 로봇의 협동 알고리즘 구현)

  • 김재희;조재승;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.648-651
    • /
    • 1997
  • This paper proposes methods for the cooperative control of multiple mobile robots and constructs a robotic soccer system in which the cooperation will be implemented as a pass play of two robots. To play a soccer game, elementary actions such as shooting and moving have been designed, and Q-learning, which is one of the popular methods for reinforcement learning, is used to determine what actions to take. Through simulation, learning is successful in case of deliberate initial arrangements of ball and robots, thereby cooperative work can be accomplished.

  • PDF

A decentralized control of cooperative transportation by multiple mobile robots using neural network compensator

  • Yang, Xin;Watanabe, Keigo;Kiguchi, Kazuo;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.50.5-50
    • /
    • 2002
  • In this paper, we propose a method using neural network (NN) to improve the motion control of a decentralized control system for cooperative transportation. In our former work, a decentralized control system for transporting a single object by multiple nonholonomic mobile robots has been developed. One of these mobile robots acts as a leader, who is assumed to be able to plan and to manipulate the omnidirectional motion of the object. Other robots, referred to as followers, cooperatively transport the object by keeping a constant position relative to the object. in this work, it is assumed that the leader can not only plan but also broadcast the local velocity of the object. Then...

  • PDF

An Advanced Path Planning of Clustered Multiple Robots Based on Flexible Formation (유동적인 군집대형을 기반으로 하는 군집로봇의 경로 계획)

  • Wee, Sung Gil;Saitov, Dilshat;Choi, Kyung Sik;Lee, Suk Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1321-1330
    • /
    • 2012
  • This paper describes an advanced formation algorithm of clustered multiple robots for their navigation using flexible formation method for collision avoidance under static environment like narrow corridors. A group of clustered multiple robots finds the lowest path cost for navigation by changing its formation. The suggested flexible method of formation transforms the basic group of mobile robots into specific form when it is confronted by particular geographic feature. In addition, the proposed method suggests to choose a leader robot of the group for the obstacle avoidance and path planning. Firstly, the group of robots forms basic shapes such as triangle, square, pentagon and etc. depending on number of robots. Secondly, the closest to the target location robot is chosen as a leader robot. The chosen leader robot uses $A^*$ for reaching the goal location. The proposed approach improves autonomous formation characteristics and performance of all system.