• Title/Summary/Keyword: multiple edge servers

Search Result 13, Processing Time 0.019 seconds

A Sufferage offloading tasks method for multiple edge servers

  • Zhang, Tao;Cao, Mingfeng;Hao, Yongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3603-3618
    • /
    • 2022
  • The offloading method is important when there are multiple mobile nodes and multiple edge servers. In the environment, those mobile nodes connect with edge servers with different bandwidths, thus taking different time and energy for offloading tasks. Considering the system load of edge servers and the attributes (the number of instructions, the size of files, deadlines, and so on) of tasks, the energy-aware offloading problem becomes difficult under our mobile edge environment (MCE). Most of the past work mainly offloads tasks by judging where the job consumes less energy. But sometimes, one task needs more energy because the preferred edge servers have been overloaded. Those methods always do not pay attention to the influence of the scheduling on the future tasks. In this paper, first, we try to execute the job locally when the job costs a lower energy consumption executed on the MD. We suppose that every task is submitted to the mobile server which has the highest bandwidth efficiency. Bandwidth efficiency is defined by the sending ratio, the receiving ratio, and their related power consumption. We sort the task in the descending order of the ratio between the energy consumption executed on the mobile server node and on the MD. Then, we give a "suffrage" definition for the energy consumption executed on different mobile servers for offloading tasks. The task selects the mobile server with the largest suffrage. Simulations show that our method reduces the execution time and the related energy consumption, while keeping a lower value in the number of uncompleted tasks.

A Privacy-preserving Image Retrieval Scheme in Edge Computing Environment

  • Yiran, Zhang;Huizheng, Geng;Yanyan, Xu;Li, Su;Fei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.450-470
    • /
    • 2023
  • Traditional cloud computing faces some challenges such as huge energy consumption, network delay and single point of failure. Edge computing is a typical distributed processing platform which includes multiple edge servers closer to the users, thus is more robust and can provide real-time computing services. Although outsourcing data to edge servers can bring great convenience, it also brings serious security threats. In order to provide image retrieval while ensuring users' data privacy, a privacy preserving image retrieval scheme in edge environment is proposed. Considering the distributed characteristics of edge computing environment and the requirement for lightweight computing, we present a privacy-preserving image retrieval scheme in edge computing environment, which two or more "honest but curious" servers retrieve the image quickly and accurately without divulging the image content. Compared with other traditional schemes, the scheme consumes less computing resources and has higher computing efficiency, which is more suitable for resource-constrained edge computing environment. Experimental results show the algorithm has high security, retrieval accuracy and efficiency.

Collaborative Inference for Deep Neural Networks in Edge Environments

  • Meizhao Liu;Yingcheng Gu;Sen Dong;Liu Wei;Kai Liu;Yuting Yan;Yu Song;Huanyu Cheng;Lei Tang;Sheng Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1749-1773
    • /
    • 2024
  • Recent advances in deep neural networks (DNNs) have greatly improved the accuracy and universality of various intelligent applications, at the expense of increasing model size and computational demand. Since the resources of end devices are often too limited to deploy a complete DNN model, offloading DNN inference tasks to cloud servers is a common approach to meet this gap. However, due to the limited bandwidth of WAN and the long distance between end devices and cloud servers, this approach may lead to significant data transmission latency. Therefore, device-edge collaborative inference has emerged as a promising paradigm to accelerate the execution of DNN inference tasks where DNN models are partitioned to be sequentially executed in both end devices and edge servers. Nevertheless, collaborative inference in heterogeneous edge environments with multiple edge servers, end devices and DNN tasks has been overlooked in previous research. To fill this gap, we investigate the optimization problem of collaborative inference in a heterogeneous system and propose a scheme CIS, i.e., collaborative inference scheme, which jointly combines DNN partition, task offloading and scheduling to reduce the average weighted inference latency. CIS decomposes the problem into three parts to achieve the optimal average weighted inference latency. In addition, we build a prototype that implements CIS and conducts extensive experiments to demonstrate the scheme's effectiveness and efficiency. Experiments show that CIS reduces 29% to 71% on the average weighted inference latency compared to the other four existing schemes.

Extracting optimal moving patterns of edge devices for efficient resource placement in an FEC environment (FEC 환경에서 효율적 자원 배치를 위한 엣지 디바이스의 최적 이동패턴 추출)

  • Lee, YonSik;Nam, KwangWoo;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.162-169
    • /
    • 2022
  • In a dynamically changing time-varying network environment, the optimal moving pattern of edge devices can be applied to distributing computing resources to edge cloud servers or deploying new edge servers in the FEC(Fog/Edge Computing) environment. In addition, this can be used to build an environment capable of efficient computation offloading to alleviate latency problems, which are disadvantages of cloud computing. This paper proposes an algorithm to extract the optimal moving pattern by analyzing the moving path of multiple edge devices requiring application services in an arbitrary spatio-temporal environment based on frequency. A comparative experiment with A* and Dijkstra algorithms shows that the proposed algorithm uses a relatively fast execution time and less memory, and extracts a more accurate optimal path. Furthermore, it was deduced from the comparison result with the A* algorithm that applying weights (preference, congestion, etc.) simultaneously with frequency can increase path extraction accuracy.

A Context-aware Task Offloading Scheme in Collaborative Vehicular Edge Computing Systems

  • Jin, Zilong;Zhang, Chengbo;Zhao, Guanzhe;Jin, Yuanfeng;Zhang, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.383-403
    • /
    • 2021
  • With the development of mobile edge computing (MEC), some late-model application technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud computing solutions are difficult to meet the requirement of growing smart cars (SCs) with computing-intensive applications. Hence, this paper studies an efficient offloading decision and resource allocation scheme in collaborative vehicular edge computing networks with multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, we propose a context-aware offloading strategy based on differential evolution algorithm (DE) by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this basis, an autoregressive integrated moving average (ARIMA) model is employed to predict idle computing resources according to the base station traffic in different periods. Simulation results demonstrate that the practical performance of the context-aware vehicular task offloading (CAVTO) optimization scheme could reduce the system delay significantly.

A Study on the Latency Analysis of Bus Information System Based on Edge Cloud System (엣지 클라우드 시스템 기반 버스 정보 시스템의 지연시간 분석연구)

  • SEO Seungho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.3-11
    • /
    • 2023
  • Real-time control systems are growing rapidly as infrastructure technologies such as IoT and mobile communication develop and services that value real-time such as factory management and vehicle operation checks increase. Various solutions have been proposed to increase the time sensitivity of this system, but most real-time control systems are currently composed of local servers and multiple clients located in control stations, which are transmitted to local servers where control systems are located. In this paper, we proposed an edge computing-based real-time control model that can reduce the time it takes for the bus information system, one of the real-time control systems, to provide the information to the user at the time it collects the information. Simulating the existing model and the edge computing model, the edge computing model confirmed that the cost for users to receive data is reduced from at least 10% to up to 80% compared to the existing model.

  • PDF

Energy-Efficient MEC Offloading Decision Algorithm in Industrial IoT Environments (산업용 IoT 환경에서 MEC 기반의 에너지 효율적인 오프로딩 결정 알고리즘)

  • Koo, Seolwon;Lim, YuJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.11
    • /
    • pp.291-296
    • /
    • 2021
  • The development of the Internet of Things(IoT) requires large computational resources for tasks from numerous devices. Mobile Edge Computing(MEC) has attracted a lot of attention in the IoT environment because it provides computational resources geographically close to the devices. Task offloading to MEC servers is efficient for devices with limited battery life and computational capability. In this paper, we assumed an industrial IoT environment requiring high reliability. The complexity of optimization problem in industrial IoT environment with many devices and multiple MEC servers is very high. To solve this problem, the problem is divided into two. After selecting the MEC server considering the queue status of the MEC server, we propose an offloading decision algorithm that optimizes reliability and energy consumption using genetic algorithm. Through experiments, we analyze the performance of the proposed algorithm in terms of energy consumption and reliability.

Hierarchical Resource Management Framework and Multi-hop Task Scheduling Decision for Resource-Constrained VEC Networks

  • Hu, Xi;Zhao, Yicheng;Huang, Yang;Zhu, Chen;Yao, Jun;Fang, Nana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3638-3657
    • /
    • 2022
  • In urban vehicular edge computing (VEC) environments, one edge server always serves many task requests in its coverage which results in the resource-constrained problem. To resolve the problem and improve system utilization, we first design a general hierarchical resource management framework based on typical VEC network structures. Following the framework, a specific interacting protocol is also designed for our decision algorithm. Secondly, a greedy bidding-based multi-hop task scheduling decision algorithm is proposed to realize effective task scheduling in resource-constrained VEC environments. In this algorithm, the goal of maximizing system utility is modeled as an optimization problem with the constraints of task deadlines and available computing resources. Then, an auction mechanism named greedy bidding is used to match task requests to edge servers in the case of multiple hops to maximize the system utility. Simulation results show that our proposal can maximize the number of tasks served in resource constrained VEC networks and improve the system utility.

Drsign and Evaluation of a GQS-based Fog Pub/Sub System for Delay-Sensitive IoT Applications (지연 민감형 IoT 응용을 위한 GQS 기반 포그 Pub/Sub 시스템의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1369-1378
    • /
    • 2017
  • Pub/Sub (Publish/Subscribe) paradigm is a simple and easy to use model for interconnecting applications in a distributed environment. In general, subscribers register their interests in a topic or a pattern of events and then asynchronously receive events matching their interest, regardless of the events' publisher. In order to build a low latency lightweight pub/sub system for Internet of Things (IoT) services, we propose a GQSFPS (Group Quorum System-based Fog Pub/Sub) system that is a core component in the event-driven service oriented architecture framework for IoT services. The GQSFPS organizes multiple installed pub/sub brokers in the fog servers into a group quorum based P2P (peer-to-peer) topology for the efficient searching and the low latency accessing of events. Therefore, the events of IoT are cached on the basis of group quorum, and the delay-sensitive IoT applications of edge devices can effectively access the cached events from group quorum fog servers in low latency. The performance of the proposed GQSFPS is evaluated through an analytical model, and is compared to the GQPS (grid quorum-based pud/sub system).

Design of Cloud Service Platform for eGovernment

  • LEE, Choong Hyong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.201-209
    • /
    • 2021
  • The term, eGovernmen or e-Government, uses technology communications devices such as computers and the Internet to provide public services to citizens and others. The eGovernment or e-government provides citizens with new opportunities to access the government directly and conveniently, while the government provides citizens with directservices. Also, in these days, cloud computing is a feature that enables users to use computer system resources, especially data storage (cloud storage) and on-demand computing power, without having to manage themselves. The term is commonly used to describe data centers that are available to many users over the Internet. Today, the dominant Big Cloud is distributed across multiple central servers. You can designate it as an Edge server if it is relatively close to the user. However, despite the prevalence of e-government and cloud computing, each of these concepts has evolved. Research attempts to combine these two concepts were not being made properly. For this reason, in this work, we aim to produce independent and objective analysis results by separating progress steps for the analysis of e-government cloud service platforms. This work will be done through an analysis of the development process and architectural composition of the e-government development standard framework and the cloud platform PaaS-TA. In addition, this study is expected to derive implications from an analysis perspective on the direction and service composition of the e-government cloud service platform currently being pursued.