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Abstract 

 
In urban vehicular edge computing (VEC) environments, one edge server always serves many 
task requests in its coverage which results in the resource-constrained problem. To resolve the 
problem and improve system utilization, we first design a general hierarchical resource 
management framework based on typical VEC network structures. Following the framework, 
a specific interacting protocol is also designed for our decision algorithm. Secondly, a greedy 
bidding-based multi-hop task scheduling decision algorithm is proposed to realize effective 
task scheduling in resource-constrained VEC environments. In this algorithm, the goal of 
maximizing system utility is modeled as an optimization problem with the constraints of task 
deadlines and available computing resources. Then, an auction mechanism named greedy 
bidding is used to match task requests to edge servers in the case of multiple hops to maximize 
the system utility. Simulation results show that our proposal can maximize the number of tasks 
served in resource constrained VEC networks and improve the system utility. 
 
 
Keywords: Vehicular Edge Computing (VEC), Multi-hop task scheduling, Resource 
management framework, Auction, Greedy matching. 
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1. Introduction 

With the development of the Internet of Vehicles (IoV), more and more onboard applications 
are provided by smart vehicles, such as active driving assistance, road traffic monitoring, 
automatic management, and entertainment applications. Some of these applications require 
intensive computation and tight delay constraints, which are beyond vehicles' capabilities. 
Mobile edge computing (MEC) is an emerging but attractive computation framework. Different 
from cloud computing, MEC makes the task computing adjacent to the requestor, so it meets 
the aforementioned requirements of IoV applications [1]. Vehicular edge computing (VEC) is 
the combination of IoV and MEC. VEC can boost the development of an intelligent 
transportation system (ITS). It is a promising technology to meet the needs of these emerging 
applications by making rational use of the computing resources of a vehicle and network edges 
[2].  

In VEC networks, a MEC server services all the vehicles covered typically [3]. This will lead 
to competition for the limited computing resource of MEC servers within vehicles [4]. As a result, 
task scheduling and resource allocation decisions are widely studied. 

A Roadside Unit (RSU) equipped with an edge server can service vehicles within its 
coverage area, reducing the computational and backhaul pressure on the resource management 
center. Therefore, a three-layer resource scheduling architecture based on vehicles, RSUs, and 
resource management centers is constructed for the IoV edge network. But the existing MEC 
resource scheduling literature rarely pays attention to the system utility problem. Referring to 
[5], the edge cloud resources are allocated by auction, and the winner transaction price principle 
is adopted. However, this method does not consider the multi-product, multi-regional 
combination problem and the uncertainty of user bidding and ignores the two-way benefits of 
users and edge systems. Reference [6] proposes a novel caching architecture for edge system 
caching to achieve the purpose of energy-saving. But this type of method mainly considers the 
performance of the user and not the revenue of the margin service provider. Reference [7] 
considers the use of genetic decision-making to implement migration strategies for computing 
tasks with different priorities in the case of an unbalanced computing resource load, thereby 
improving the migration rate of edge computing. However, the full utilization of edge 
computing resources is not considered. Although resource scheduling has received a lot of 
attention in recent years, it usually ignores the collaboration between edge servers.  

MEC resource allocation is one of the most important issues in MEC research. The authors 
of [8] developed a distributed resource sharing scheme for vehicle networks, where multiple 
vehicle-to-vehicle (V2V) links can share and reuse the spectrum allocated to vehicle-to-
infrastructure (V2I) links to improve the system capacity and reliability. In [9], a joint scheme 
for unstable V2V links is proposed by considering a joint optimization model of transmission 
mode selection and resource allocation. In [10], a computational offloading and resource 
allocation scheme for time-varying multi-user MEC systems is proposed, and an algorithm 
based on centralized double deep Q-learning (DDQL) is proposed. A MEC based on a vehicle 
network was studied in [11], and a software-defined network (SDN) controller was proposed 
to collect global information on the network state. They utilize an SDN-based system to 
improve the efficiency of vehicle networks by optimizing offload node selection and resource 
allocation. 

Considering that many mobile vehicles have some computational tasks that need to be 
processed, however, these vehicles lack sufficient computational resources. Therefore, vehicles 
need to rent computing resources from nearby RSUs, and to guarantee the quality of service, 
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the transmission delay of each task must be less than a deadline. In real life, there are multiple 
MEC servers on the real road. The resource management center needs to manage these servers 
reasonably and allocate MECs with insufficient resources to MECs with sufficient resources, 
which can not only improve network performance but also improve service quality [12]. 

For the resource allocation and pricing of edge computing systems, for edge providers, under 
limited resource conditions, users will bid for resources according to their budgets and costs to 
obtain better services, and resource providers will bid according to their bids [13-16]. Select users, 
deliver resources to users with higher bids, ensure user performance experience, and improve 
the overall revenue of edge systems. From a system point of view, edge service providers get 
more benefits from limited resources; Reference [17] studies the optimal service provider to 
maximize revenue under the constraints of quality of service (QoS) for all mobile users' 
resource allocation problems. Reference [18] proposed the concept of network service module 
market, using the method of stochastic process, to transform the problem of network resource 
allocation into the problem of resource buying and selling. The deterministic bidding method 
assumes that the user's bid is known, and the uncertainty of the user's bid leads to information 
lag in the resource auction and pricing process, which makes the deterministic auction method 
limited. From the user's point of view, users can Free choice of resources is required, and the 
quality of service can be guaranteed [19]. Therefore, the auction-based edge resource scheduling 
method adopted in this paper can effectively improve the overall system efficiency. There are 
many research results on system utility and resource management, which are well summarized 
in Reference [20]. 

 There has been some research devoted to resource allocation and workload scheduling of 
edge cloud. Reference [21] applied the Markov approximation framework to solve the 
computational offload scheduling problem by using a distributed algorithm. Reference [22] 
proposes an iterative algorithm to solve joint communication and computational resource 
allocation problems. However, most of these studies do not address the problem of optimal 
matching between task scheduling and servers, and most studies on auction decision-making 
are concerned with maximizing benefits for service providers. Ignore the problem of 
maximizing system utility. For edge providers, under the condition of limited resources, users 
will bid for resources according to their budgets and costs to obtain better services. Resource 
providers select users based on their bids and deliver resources at higher prices. At the same 
time, it also ensures the user's performance experience and improves the overall revenue of the 
edge system. Reference [23] models computational offload scheduling as a mixed integer linear 
programming problem and designs quality of experience (QoE)-based node selection strategy 
based on the solution of the piecewise optimization problem. Referring to [24] to establish a 
global optimization problem, an uncertain offload scheduling algorithm is designed to minimize 
the expected delay. However, most of these studies study resource allocation from the 
perspective of workload scheduling, which is also different from considering resource 
competition from an economic perspective and ultimately achieves the goal of maximizing 
system utility. Referring to [25], a game-theoretic online algorithm is designed to solve the 
problem of offloading scheduling of computing tasks, and an online bin packing algorithm is 
used to calculate resource allocation. Although the literature [25] also designed a three-layer 
IoV model, uploading vehicle tasks to the cloud layer will cause a large delay, which is not 
suitable for the processing of delay-sensitive tasks. From a system perspective, edge service 
providers gain more benefits from limited resources; from a user perspective, users can freely 
choose the resources they need to ensure service quality. Since latency and server capacity 
constraints are important factors affecting user service quality, our goal is to optimize system 
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utility under the constraints of task request latency and available computing resources of the 
MEC server. 

In VEC, several recent works focus on multi-hop offloading strategies based on vehicle 
coordination and server coordination. Reference [26] uses a vehicle-coordinated multi-hop 
offloading method to handle the computational task and proposes a semi-definite relaxation 
method with an adaptive adjustment process to solve the proposed optimization problem to 
obtain the corresponding unloading decision. Reference [27] proposed a cluster-based cellular-
vehicle to everything (C-V2X) network collaborative task offloading scheme. This scheme 
discusses the cooperation between the MEC server and the vehicles with idle computing 
resources. However, the above literature does not consider the cooperation with the surrounding 
MECs and does not fully utilize the abundant computing resources of the MECs, which will 
lead to the waste of the surrounding MEC resources. Reference [28] proposed a collaborative 
method for offloading services to cars in a vehicle network based on MEC and cloud computing. 
The cloud-MEC collaborative computing offloading problem is established by collaboratively 
optimizing computing offloading decisions and computing resource allocation. Reference [29] 
proposes a Fiwi-enhanced in-vehicle edge computing network architecture to support the 
coexistence of remote cloud centers and lightweight edge servers connected to RSUs. Reference 
[30] studies the multi-hop computing offloading problem of the edge cloud computing model 
of the Industrial Internet of Things, and adopts the game theory method to realize the computing 
offloading of distributed perception quality of service (QoS). However, the above work focuses 
on the offloading of the cloud server and MEC server, but this will lead to an increase in latency, 
which is not conducive to the offloading of low latency tasks and the full utilization of MEC 
server resources. In order to solve the above problems, and fully schedule MEC server resources, 
this paper proposes a multi-hop MEC task scheduling decision, which is different from the 
traditional two-layer edge network hierarchical structure. Firstly, based on a two-level cluster 
VEC network, a three-layer resource management structure model is constructed to realize 
efficient resource management and computing offloading. Secondly, the computing offloading 
tasks are balanced to adjacent indirect connecting MEC servers through a multi-hop RSU-to-
RSU (R2R) path. Thirdly, a nearby management node manages the multi-hop R2R computing 
offloading in the cluster. 

This paper constructs a hierarchical model of the VEC network based on cluster class. In 
the model, multiple vehicles move within the coverage area of the RSU, and multiple RSUs 
cooperate to serve the vehicle. Under the constraints of service execution delay and limited 
storage of the MEC server, this paper adopts the GBMTS algorithm to maximize the system 
utility while satisfying the constraints of task request delay and available computing resources 
of the MEC server. First, we model the system utility maximization problem as a many-to-one 
weighted bipartite graph matching problem with multiple knapsack constraints and then 
propose the GBMTS decision algorithm to solve this problem. The main contributions of this 
work are as follows.  

The main contributions of our work are as follows. 
1) A hierarchical resource management system for VEC is proposed, which consists of a 

framework and an interacting protocol. In the framework, the hierarchical resource 
management structure and the main functional modules of each layer are designed. Then these 
modules cooperate for resource management with the interacting protocol. It should be noted 
that this system can be easily extended and applied to other MEC environments. 

2) Considering the benefit of vehicle users and the cost of the MEC server, the task 
scheduling problem is modeled as a multi-knapsack restricted multi-to-one weighted bipartite 
graph matching under the delay constraints of tasks and the resource constraints of MEC servers. 
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Furthermore, to improve the utilization of resources and the success rate of computing requests, 
it’s a multi-hop matching based on the cluster-based hierarchical structure. 

3) To solve the afore matching problem, a greedy bid-winning multi-hop task scheduling 
decision algorithm is proposed based on the auction mechanism. 

2. The hierarchical resource management framework and protocol for 
VEC Networks 

VEC network is a typical resource-constrained environment, so effective resource 
management is essential to make full use of resources and improve service capabilities. As a 
result, a hierarchical resource management framework and an interacting protocol are 
proposed in this section. 

2.1 The hierarchical resource management framework 
Considering the practical environments of IoV and MEC, a typical cluster-based hierarchical 
structure of VEC networks is concluded as in Fig. 1. In this structure, the main part is the two-
level cluster, based on which effective network management can be implemented. As shown 
in Fig. 1, the 1st-level cluster contains one head, i.e., gNB node in 5G or other base station 
node, and many members, i.e., vehicles and RSUs combined with MEC servers. The 2nd-level 
cluster also contains one head, i.e., the RSU node, and many members, i.e., vehicles. 
Furthermore, one 1st-level cluster contains multiple 2nd-level clusters, and the bidirectional 
wireless links exist between every neighbor cluster head pair, neighbor cluster head and 
member pair, and neighbor cluster member pair. 

For realizing effective resource management in cluster-based VEC networks shown in 
Fig. 1, a hierarchical resource framework is designed. The detail of the framework is described 
in Fig. 2. The whole 
framework is divided into three layers, named layer0, layer1, and layer2, respectively. 

1) Layer0: Consists of vehicles that are the offloading requesters and the task executors 
and contains three main modules, i.e., a local resource monitoring module for monitoring the 
resource usage of the vehicle itself, a task processing decision module for task division and 
offloading, etc. and a task computing module for executing tasks.  

2) Layer1: Consists of MEC servers which are the executors of the offloading computing 
and the task 
migration, and contains four main modules, i.e., a local resource monitoring module for 
monitoring the resource usage of the MEC server itself, a resource allocation decision module 
for allocating the necessary resources for tasks or giving a task migration decision with 
insufficient resources, a task migration module for executing task migration and a task 
computing for executing tasks.  

3) Layer2: Consists of base stations, such as gNBs, which are the resource management 
centers (RMCs) for making task scheduling decisions, and contains three main modules, i.e., 
a cluster resource monitoring module for monitoring the resource usages of all nodes in the 
cluster, a task scheduling strategy module for adopting different task scheduling strategies and 
a task scheduling decision module for making scheduling decisions according to strategies. 
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Fig. 1. The typical cluster-based hierarchical structure of VEC networks 

2.2 The interacting protocol 
The interacting protocol describes the interacting details among different modules of the 
framework. Therefore, the combination of the framework and the interacting protocol 
produces a workable hierarchical resource management system.  

Next, we take the application of the system on VEC as an example to show the work 
process. However, it must be noted that this system can also be applied in other scenarios. 
CASE 1: Pure Local Computing (PLC) on vehicles 
STEP 1. A vehicle generates a task, and the local resource monitoring module of the vehicle 

tells the task processing decision module that the resource for computing the task is 
enough. 

STEP 2. The task processing decision module decides to compute the task by the vehicle itself. 
STEP 3. The task computing module of the vehicle computes the task locally. 
CASE 2: Offloading Computing (OC) on MEC servers or vehicles 
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Fig. 2. The hierarchical resource management framework 



3644                                                                 Hu et al.: Hierarchical Resource Management Framework and Multi-hop Task  
Scheduling Decision for Resource-Constrained VEC Networks 

In CASE 2, there are two subcases named Pure Offloading Computing (POC) and Hybrid 
Offloading Computing (HOC). 
STEP 1. (on vehicle): A vehicle generates a task, and the local resource monitoring module 

of the vehicle tells the task processing decision module that the resource for 
computing the task is not enough, so the task processing decision module chooses 
one mode between POC and HOC. 

STEP 2. (on vehicle): The task processing decision module interacts with the resource 
allocation decision module of the registered MEC server to execute offloading 
computing. If HOC is chosen, the task processing decision module is also 
responsible for segmenting the task into multiple subtasks and decides which are 
computed locally and which are offloaded to the MEC server. 

STEP 3. (on MEC server): The resource allocation decision module of the registered MEC 
server receives the request, so it asks the local resource monitoring module whether 
there are enough resources for the task. If YES, it accepts the offloading computing 
request and goes to STEP 4 for computing. Otherwise, it requests the task scheduling 
decision module of gNB to schedule the task and goes to STEP 5. 

STEP 4. (on MEC server): The task computing module of the registered MEC server 
computes the task offloaded by vehicles and then feeds the results back to the task 
processing decision of the vehicle. 

STEP 5. (on gNB): The task scheduling decision module of gNB receives the task scheduling 
request, then it makes the scheduling decision according to the resource information 
from the cluster resource monitoring module and the scheduling strategy from the 
task scheduling strategy module.  

STEP 6. (on gNB): The scheduling decision is fed back to the involved MEC server. 
STEP 7. (on MEC server): When a MEC server receives feedback from gNB, it updates the 

migration rules in its task migration module. If it isn't the destination of migration, 
its task migration module will migrate the task received continuously. Otherwise, a 
task request will send to the resource allocation decision module, and then the task 
computing module will compute the task. 

STEP 8. (on MEC server): After the task has been computed, the MEC server will feed the 
results back to the requesting vehicle. 

STEP 9. (on vehicle): The requesting vehicle receives the result fed back. If POC is used, the 
result is the final one. If HOC is used, the task processing decision module integrates 
the results of different subtasks to get a meaningful and complete result. 

3. Greedy Bid-based Multi-hop Task Scheduling Decision Algorithm 
Based on the hierarchical resource management framework, a Greedy Bid based Multi-hop 
Task Scheduling decision algorithm named GBMTS is proposed in this section. 

3.1 The delay model 
There are three computing models used in MEC which are known as local computing, full 
offloading computing, and partial offloading computing, respectively. Because our work is 
about the multi-hop task scheduling decision, it is sufficient to only consider the offloading 
computing model. As a result, for simplicity, full offloading computing is taken as the example 
in our discussion without loss of generality.  
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In the full offloading computing model, the full task is offloading from the vehicle to the 
MEC server selected, which may be with a multi-hop mode in our discussions. Therefore, the 
whole delay experienced by the vehicle consists of the multi-hop transmission delay of the task, 
the computing delay on the computing MEC server, and the transmission delay of the result 
mainly. 

Without loss of generality, we consider that there is only one task on each vehicle needed to 
be offloaded for the simplicity of discussion. Let Task , ,i ii iD A T<   = >  denotes the task offloaded 
by the vehicle i (represented as Veh i ), where D is the amount of the task, A is the CPU cycles 
for computing the task, and T is the deadline required by the task. Furthermore, we suppose that 
the channels used by any neighbor nodes are bidirectional, and vehicles and MEC servers each 
have the same transmission power. 

In the beginning, Task i  is transmitted Veh i  to its neighbor MEC server x (represented as 
Servx ) in one hop, then Task i  is retransmitted by MEC servers in multi-hop mode until it reaches 
Serv j . Therefore, the multi-hop transmission delay of the task FTran

,i jt  is computed as 

 FTran
, V2I I2I

, ,

1)i i
i j

i x x y

D D
t h

r r
= +  ⋅ ( −  (1) 

where h is the hops from Veh i  to Serv j , 
V2I
,i xr  and I2I

,x yr  are the wireless transmission rates used 
for V2I and I2I communications, respectively, which can be computed with Shannon's 
theorem as 

 ,
, , 2 2log (1 )n n m

n m n m

p g
r B

σ
= +  (2) 

where ,n mB  is the channel bandwidth between two neighbor nodes <n, m>, np  is the 

transmission power of the node n, ,n mg  is the channel gain and σ2 is the noise power. 

When Serv j  receive Task i , it allocates some computing resources ija  to compute the task. So, 

the computing delay Comp
ijt  is computed as 

 Comp i
ij

ij

A
t

a
=  (3) 

The computation result is transmitted back Veh i  through a reverse path, so the transmission 
delay of the result RTran

,j it  is computed as 

 RTran '
, I2I I2V

, ,

1)i i
j i

y x x i

R R
t h

r r
=  ⋅ ( − +  (4) 

where R is the amount of the result. 
Finally, the total delay Off

ijt  of Task i  on Serv j  is computed as 

 Off FTran Comp RTran
, ,ij i j ij j it t t t= + +  (5) 

According to [31], the amount of the computation result is much smaller compared to the 
task for many applications, e.g., face recognition. As a result, RTran

,j it  can be ignored. Then, (5) 
can be simplified to 
 Off FTran Comp

,ij i j ijt t t= +  (6) 
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3.2 Problem formulation 
In offloading computing, a MEC server with finite computation resources can’t afford all of the 
computation tasks of vehicles. It results in the rejections of some task requests. Then these 
requests are forwarded by the MEC servers to the RMC (i.e., gNB) based on our proposed 
hierarchical resource management framework. When the RMC receives these requests, it will 
make a task scheduling decision that matches these tasks to the MEC servers in its cluster.  

The task scheduling decision is a solution to the competition of the tasks for the limit and 
shareable computing resources, so it is modeled as a multiple-to-multiple auction which is 
defined in Definition 1.  

Definition 1. The auction for the task scheduling decision is a multiple-to-multiple auction. 
In the auction, the RMC acts as the auctioneer. The tasks act as the bidders and bid for the 
computation resources of the MEC servers managed by the RMC in the 1st-cluster. Furthermore, 
due to the tasks can’t be divided further, each task is matched to only one MEC server, but one 
MEC server can be matched by multiple tasks conversely. 

It should be noted that different from the normal auction types, the auction in Definition 1 
is a matching of multi-task to the multi-MEC server and have multiple different available 
auction results. Let B  denote the bid set, which contains all the bids in the auction, ijb ( ijb ∈ B ) 
denote the bid of Task i  for Serv j  and ,iij jbS j<=  >  denote Task i  is successfully matched to Serv j  

with ijb , so any auction result is a matching set M  which consists of all ijS  in the auction.  
Definition 2. The utility of Serv j  is the profit earned by renting its computing resources to 

its matching tasks for offloading computing. Therefore, it can be computed as 
 

, |
( )

ij

j ij i j
b j j

U b A C
<  >∈

= − ×∑
M w

 (7) 

where jU  and Cj  denote the utility and the cost spent in one CPU cycle of Serv j  respectively. 
Definition 3. The system utility is the total profit of all MEC servers involved in M . 

Therefore, it can be computed as 
 system

M
j

j
U U

∈

= ∑  (8) 

Where systemU  denotes the system utility. 

By substituting (7) into (8), the specific computation systemU  is given by (9) as follows 
 system

,
( )

ij

ij i j
b j

U b A C
<  >∈

= − ×∑
M w

 (9) 

Definition 4. The optimal auction is the auction that produces the maximum system utility 
and the result of which is the optimal matching set. 

Because the multi-hop task scheduling decision is equivalent to finding the optimal auction, 
the problem is converted to find the optimal matching set to maximize systemU . Then based on (9), 
the optimal problem of GBMTS is defined as follows. 

Definition 5. Optimal Problem (OP) is finding the optimal matching set to maximize systemU  
under the constraints of delay and computation resources which is formulated as follows 
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Where jW  denotes the available computation resources of Serv j . In (10), C1 shows that the 
matching set is produced from the bid set, C2 shows that the total computation resources needed 
by all tasks matched to Serv j must be less or equal to the available computation resources Serv j , 
C3 shows that the offloading computing delay of Task i  must be less or equal to its deadline. 

3.3 GBMTS algorithm 
In this section, the GBMTS algorithm is designed to resolve the optimal problem described in 
(10). The GBMTS algorithm can be divided into two consistent phases named pruning phase 
and greedy matching phase, respectively.  

1) Pruning Phase 
In the auction, each task generates a bid for every MEC server, but some of the bids are 

meaningless for the computation resource or the offloading computing delay of the MEC server 
is unavailable for the task. Therefore, in the pruning phase, these meaningless bids are removed 
from B  by the RMC, and the details of pruning are shown in Algorithm 1. 
 

Algorithm 1. Pruning 
Input: B  
Output: prunedB  

1: Initialization: pruned φ=B  

2: For each ijb ∈ B  Do  

3:         If Off
ij it T≤  And i jA W≤  

4:                  pruned pruned { }ijb= ∪B B  
5:         End If 
6: End For 
7: Return prunedB  

 
As the result of pruning, the OP can be simplified by removing the constraint C3 from (10) 

as follows. 

 
,

, |

( ) max{ ( )}

s.t. C1:
C2 :

ij

ij

ij i j
b j

i j
b j j

OP b A C

A W

<  >∈

<  >∈

= − ×

                    ⊆

                       ≤

∑

∑

M w

M

M

M B  (11) 

2) Greedy Matching Phase 
In the greedy matching phase, the RMC constructs a weighted bipartite graph ( , )G V E=   

based on the results of pruning, as shown in Fig. 3. The vertex set V consists of two disjoint 
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subsets: task subset Vtask and MEC server subset Vserver respectively. In the edge set E, for every 
prunedijb ∈ B , the corresponding < Task i , Serv j > pair constructs an edge ije  with the weight wij 

shown in (12).  
 ij ij i jw b A C= − ×  (12) 
 

 
Fig. 3. An example of the weighted bipartite graph constructed by RMC 

 
Greedy matching is an iterative greedy selection process. In each iteration, one edge with 

the maximum weight is selected. That is to say, one matching pair is found. When the greedy 
matching ends, all selected matching pairs construct a solution set which is the optimal 
matching set of OP. The details of greedy matching are shown in Algorithm 2. 

 
Algorithm 2. Greedy Matching 
Input: E  
Output: Ω  
1: Initialization: φΩ =  
2: While E φ≠  Do  
3:         Select the edge with the maximum weight in E 
4:         If multiple edges are selected Then 
5:                  Select an edge randomly 
6:         Let ije  be the selected edge 

4:         If i jA W≤  Then 

5:                  { }ijbΩ = Ω ∪  

6:                  j j iW W A= −  
7:                   Delete all edges related to Task i  from E 
8:         Else 
9:                  { }ijE E e= −  
10:       End If 
11: End While 
12: Return Ω  
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3.4 The computation efficiency of GBMTS algorithm 
GBMTS algorithm consists of two sequential sub-algorithms: Algorithm 1 and Algorithm 2. 
Considering the case that there are n tasks needed to be matched to m servers by the RMC. In 
Algorithm 1, it will iterate every bid in β  for pruning, so the time complexity of Algorithm 1 
is O(nm). In Algorithm 2, there are nm edges in the worst case, and it will iterate every edge to 
match tasks to servers, so the time complexity of Algorithm 2 is O(nm) too. Therefore, the time 
complexity of GBMTS algorithm equals to O(nm)+O(nm)= O(nm), that is GBMTS algorithm 
can be conducted in polynomial time. 

4. Simulation and Result Analysis 

4.1 Simulation Parameter Setting 

The proposed GBMTS algorithm is simulated with Matlab, and the specific simulation 
parameters are shown in Table 1.  

 
Table 1. simulation parameters 

Parameters  Value 
Vehicle computing capability l

ia  [1,2] GHZ 
Vehicle transmitting power ip  [1,2] W 
Computation input data size id   [10,100] KB 
Noise power 2σ  -60dBm 
Bandwidth jB   [1,3] MHz 
Number of CPU cycles required to 
complete the task [20,80] 

Capacity of the MEC server jL  [60,200] 

Transmitted power of the RSU c
jp  [10,15] w 

The channel gain hij [1,3] 
MEC server cost jC  [0.1,1] 

The number of vehicle tasks L [5,30] 
The number of MEC servers M [5,15] 

 

4.2 Results and Analysis 

In the simulation, a benchmark algorithm named HBMTS and a centralized heuristic greedy 
offloading (CHGO) algorithm [29] are used to verify the effectiveness of our GBMTS 
algorithm. 

• The highest bid based multi-hop task scheduling (HBMTS) decision algorithm works 
in a distributed mode, each vehicle generates bids for every MEC server in three hops. 
When a MEC server receives the bids from vehicles, it sorts all requests, the delay 
constraint of which can be satisfied, in a descending order based on the bids. Then the 
request with the highest bid will be replied. If a vehicle receives one reply, it offloads 
the task directly, else it chooses a MEC server randomly to offload. This process iterates 
until all requests are accepted or the delay constraint of task expires. In HBMTS, all 
interchanges are process in multi-hop R2R mode. 
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• The centralized heuristic greedy offloading (CHGO) algorithm adopts a centralized 
management mode. The management center matches tasks to MEC servers based on the 
minimum processing delay. In each iteration, a task is matched and offloaded to the 
MEC server which can achieve the minimum processing delay through multi-hop R2R 
path. This process iterates until all the vehicles have made their offloading decisions.  

Fig. 4 shows the situation in which the utility value of the system changes with the increase 
of the number of requesting vehicles in the three cases of the number of MEC servers M=5, 
M=10, and M=15. With the increase in the number of requesting vehicles and the number of 
MEC servers, the available system utility increases. When M=5 and M=10, as a result of the 
limitation of MEC server resources, along with the increase of the number of vehicles is 
competition for resources, get service vehicles, the less instead, when the number of vehicles is 
greater than 25, satisfy the constraint conditions of the request has been assigned to complete 
basic vehicle, even if the number of vehicles increases, the winner of the number basically 
remains unchanged, decision convergence. 

Fig. 5 shows that the system service rate increases with MEC servers when L=10, L=20, 
and L=30. As shown in the figure, with the increase in the number of MEC servers and vehicles, 
the system service rates of the three algorithms will also increase accordingly. Among them, 
the GBMTS algorithm increases the fastest because the GBMTS algorithm can improve the 
system service by increasing the number of MEC servers. Speed, so that more vehicles can be 
served. 

 

 
 

Fig. 4. System utility vs. Number of requesting vehicles with different MEC servers. 
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Fig. 5. System service rate vs. MEC servers with different vehicles. 
 

Fig. 6 shows the changes in system utility caused by changes in the number of different 
MEC servers. As shown in the figure, as the number of edge servers increases, the available 
system utility values show an upward trend. Among them, the GBMTS decision is better than 
the lowest delay multi-hop task scheduling decision and the highest bid multi-hop task 
scheduling decision. Since the minimum delay decision only considers the optimal time delay 
and ignores the cost of the server, the system utility value is the lowest. The CHGO algorithm 
considers the delay and only needs to satisfy the CHGO decision. But it ignores the number of 
resources required by the vehicle itself. The HBMTS algorithm considers the optimal bidding, 
but it ignores the delay, so the system utility value is lower than that of GBMTS. 

Fig. 7 shows the variation of vehicle winners due to the different number of MEC servers. 
As shown in the figure, with the increase of MEC servers, the number of winning vehicles also 
increases. Set the request vehicles L=20 and the number of MEC servers M=10. With the 
increase in the number of edge servers, the available system utility values show an upward trend. 
Among them, the GBMTS decision is better than the lowest delay multi-hop task scheduling 
decision and the highest bid multi-hop task scheduling decision. The CHGO algorithm only 
selects the optimal delay, ignoring the service to most vehicles. The HBMTS algorithm only 
considers the bidding of vehicles and chooses to ignore the vehicles that do not meet the bidding 
because the number of services is less than GBMTS. 

Fig. 8 shows that when the number of requesting vehicles changes and the MEC server is 
fixed at M=10, the system utility values obtained by using different decisions are also different. 
With the increase in the number of requesting vehicles, the system utility values are increasing 
all the time. The decision proposed in this paper increases the fastest, and the system utility 
values obtained are also the most. When the number of requesting vehicles reaches 20, the 
system utility values obtained by using different multi-hop task scheduling decisions are the 
same, due to the limited capacity of resources, the system utility value increases slowly 
compared with before. However, after the number of vehicles reaches 20, the system utility 
value of the proposed decision also increases faster than the other two decisions. This is because 
the proposed decision can find the optimal node to serve the vehicles and realize the optimal 
allocation of resources under the condition of limited resources. 
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Fig. 6. System utility vs. MEC servers with different algorithms 

 
 

 
Fig. 7. Number of winning vehicles vs. MEC servers with different algorithms 
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Fig. 8. System utility vs. Number of requesting vehicles with different algorithms. 

 
Fig. 9 shows that when L=30, the average delay of all algorithms decreases as the number 

of MEC server increases, and HBMTS always has the largest delay for all scenes. Moreover, 
when the number of MEC servers is small (<4 in our simulations), CHGO has the smallest 
delay, but as it increases, GBMTS gets the smallest delay. This is because the matching 
mechanism of GBMTS can make use of the resources of MEC servers more effectively under 
the restriction of task deadlines. 

Fig. 10 shows that when M=5, the average delay of all algorithms increases as the number 
of requesting vehicles increases, and HBMTS has the largest delay for all scenes. Moreover, 
when the number of requesting vehicles is more than 14, GBMTS gets the smallest delay for it 
can achieve more effective offloading decisions by considering the delay and available 
resources of MEC servers. This is further illustrated that GBMTS is more effective in an actual 
VEC network. 

 

 
Fig. 9. Average Delay vs. MEC servers with different algorithms. 
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Fig. 10. Average Delay vs. Number of requesting vehicles with different algorithms. 

5. Conclusion 
In this paper, we consider the problem of scheduling tasks for time-sensitive vehicle users by 
auction mechanism and then allocating resources by multi-hop MEC matching the optimal 
MEC server so as to avoid overwork and waste of resources in any one MEC. This paper puts 
forward a kind of general applicable to large-scale car side end two-stage cluster at the edge of 
the network structure model. Within the cluster will task scheduling with MEC server model 
matching problem into multiple knapsack restrictions on a weighted binary map-matching 
problem, the GBMTS decision is proposed to solve the matching problem to achieve the 
rational allocation of resources, And the task scheduling path is planned to realize multi-hop 
offloading of the task. The simulation results show that the GBMTS decision can increase the 
number of serviced vehicles in the edge computing network of vehicle linkage and maximize 
the system utility under the condition of satisfying the time delay and capacity constraints. 

References 
[1] L. L. Wang, J. S. Gui, X. H. Deng, “Routing Algorithm Based on Vehicle Position Analysis for 

Internet of Vehicles,” IEEE Internet of Things Journal., vol. 7, no. 12, pp. 11701-11712, jun. 2020. 
Article (CrossRef Link) 

[2] J. Xu, L. Chen and S. Ren, “Online Learning for Offloading and Autoscaling in Energy Harvesting 
Mobile Edge Computing,” IEEE Transactions on Cognitive Communications and Networking., vol. 
3, no. 3, pp. 361-373, jul. 2017. Article (CrossRef Link) 

[3] C. Lee and A. Fumagalli, “Internet of Things Security - Multilayered Method For End to End Data 
Communications Over Cellular Networks,” in Proc. of 2019 IEEE 5th World Forum on Internet of 
Things (WF-IoT), 2019. Article (CrossRef Link) 

[4] H. Li, X. Li, M. Zhang, and B. Ulziinyam, “Multicast-oriented task offloading for vehicle edge 
computing,” IEEE Access., vol. 8, pp. 187373-187383, Oct. 2020. Article (CrossRef Link) 

5 10 15 20 25 30

Number of requesting vehicles

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Av
er

ag
e 

D
el

ay
(s

ec
)

GBMTS

HBMTS

CHGO

http://doi.org/doi:10.1109/JIOT.2020.2999469
http://doi.org/doi:10.1109/TCCN.2017.2725277
https://ieeexplore.ieee.org/document/8767227
http://doi.org/doi:10.1109/ACCESS.2020.3030943


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022                  3655 

[5] A. Kiani, N. Ansari, “Toward hierarchical mobile edge computing: an auction-based profit 
maximization approach,” IEEE Internet of Things Journal., vol. 4, no. 6, pp.2082-2091, Dec. 2017. 
Article (CrossRef Link) 

[6] G. S. Li, Q. Y. Lin, J. H. Wu, “Dynamic computation offloading based on Graph partitioning in 
Mobile Edge Computing” IEEE Access, vol. 7, pp.185131-185139, Dec. 2019.  
Article (CrossRef Link) 

[7] J. Cheng, D. Guan, “Research on task-offloading decision mechanism in mobile edge computing-
based Internet of Vehicle,” EURASIP Journal on Wireless Communications, pp. 2-14, Apr. 2021. 
Article (CrossRef Link) 

[8] L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular networks based on multi-agent 
reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 37, no. 10, pp. 2282–2292, Oct. 2019. 
Article (CrossRef Link) 

[9] X. Zhang, M. Peng, S. Y an, and Y. Sun, “Deep-reinforcement-learning-based mode selection and 
resource allocation for cellular V2X communications,” IEEE Internet Things J., vol. 7, no. 7, pp. 
6380–6391, Jul. 2020. Article (CrossRef Link) 

[10]  H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. M. Leung, “Deep reinforcement learning for energy-
efficient computation offloading in mobile-edge computing,” IEEE Internet Things J., vol. 9, no. 2, 
pp. 1517–1530, Jan. 2022. Article (CrossRef Link) 

[11]  H. Zhang, Z. Wang, and K. Liu, “V2X offloading and resource allocation in SDN-assisted MEC-
based vehicular networks,” China Communications., vol. 17, no. 5, pp. 266-283, May. 2020.  
Article (CrossRef Link) 

[12]  Y. Liu, H. M. Yu, Y. Zhang, “Deep reinforcement learning for offloading and resource allocation 
in vehicle edge computing and networks,” IEEE Transactions on Vehicular Technology., vol. 68, 
no. 11, pp. 11158-11168, Nov. 2019. Article (CrossRef Link) 

[13]  L. Tan, R. Hu, “Mobility-aware edge caching and computing in vehicle networks: a deep 
reinforcement learning,” IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10190-
10203, Nov. 2018. Article (CrossRef Link) 

[14]  G. H. Qiao, S. P. Leng, K. Zhang, “Collaborative Task Offloading in Vehicular Edge Multi-Access 
Networks,” IEEE Access, vol. 8, pp. 51-59, Oct. 2020. Article (CrossRef Link) 

[15]  T. Feng, B. Wang, H. -t. Zhao, T. Zhang, J. Tang and Z. Wang, “Task distribution offloading 
algorithm based on DQN for sustainable vehicle edge network,” in Proc. of 2021 IEEE 7th 
International Conference on Network Softwarization (NetSoft), 2021. Article (CrossRef Link) 

[16]  C. M. Xu, S. H. Liu, C. Zhang, “Multi-agent Reinforcement learning Based Distributed 
Transmission in Collaborative Cloud-Edge Systems,” IEEE Transactions on Vehicular Technology, 
vol. 70, no. 2, pp. 1658-1672, Jan. 2021. Article (CrossRef Link) 

[17]  X. Guo, R. Singh, T. Zhao and Z. Niu, “An index based task assignment policy for achieving 
optimal power-delay tradeoff in edge cloud systems,” in Proc. of 2016 IEEE International 
Conference on Communications (ICC), 2016. Article (CrossRef Link) 

[18]  K. Zhang, Y. Mao, S. Leng, S. Maharjan and Y. Zhang, “Optimal delay constrained offloading for 
vehicular edge computing networks,” in Proc. of 2017 IEEE International Conference on 
Communications (ICC), 2017. Article (CrossRef Link) 

[19]  D. T. Hoang, D. Niyato and P. Wang, “Optimal admission control policy for mobile cloud 
computing hotspot with cloudlet,” in Proc. of 2012 IEEE Wireless Communications and 
Networking Conference (WCNC), 2012. Article (CrossRef Link) 

[20]  Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A Survey on Mobile Edge Computing: 
The Communication Perspective,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 
2322-2358, Aug. 2017. Article (CrossRef Link) 

[21] W. He, S. Guo, Y. Liang, and X. Qiu, “Markov approximation method for optimal service 
orchestration in IoT network,” IEEE Access, vol. 7, pp. 49538–49548, Apr. 2019.  
Article (CrossRef Link) 

[22] J. Zhang et al., “Energy-latency tradeoff for energy-aware offloading in mobile edge computing 
networks,” IEEE Internet Things J., vol. 5, no. 4, pp. 2633–2645, Aug. 2018.  
Article (CrossRef Link) 

http://doi.org/doi:10.1109/JIOT.2017.2750030
http://doi.org/doi:10.1109/ACCESS.2019.2960887
http://doi.org/doi:10.1186/s13638-021-01984-6
http://doi.org/doi:10.1109/JSAC.2019.2933962
http://doi.org/doi:10.1109/JIOT.2019.2962715
http://doi.org/doi:10.1109/JIOT.2021.3091142
http://doi.org/doi:10.23919/JCC.2020.05.020
http://doi.org/doi:10.1109/TVT.2019.2935450
http://doi.org/doi:10.1109/TVT.2018.2867191
http://doi.org/doi:10.1109/ACCESS.2020.3030943
https://ieeexplore.ieee.org/xpl/conhome/9492309/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9492309/proceeding
https://doi.org/10.1109/NetSoft51509.2021.9492640
http://doi.org/doi:10.1109/TVT.2021.3055511
https://ieeexplore.ieee.org/document/7511147
https://ieeexplore.ieee.org/document/7997360
https://ieeexplore.ieee.org/document/6214347
http://doi.org/doi:10.1109/COMST.2017.2745201
http://doi.org/doi:10.1109/ACCESS.2019.2910807
http://doi.org/doi:10.1109/JIOT.2017.2786343


3656                                                                 Hu et al.: Hierarchical Resource Management Framework and Multi-hop Task  
Scheduling Decision for Resource-Constrained VEC Networks 

[23] Z. Wang, S. Zheng, Q. Ge, K. Q. Li, “Online Offloading Scheduling and Resource Allocation 
Algorithms for Vehicular Edge Computing System,” IEEE Access, vol. 8, pp. 52428-52442, Mar. 
2020. Article (CrossRef Link) 

[24] Y. Cao and Y. Chen, “QoE-based node selection strategy for edge computing enabled Internet-of-
Vehicle(EC-lov),” in Proc. of 2017 IEEE Visual Communications and Image Processing (VCIP), 
pp. 1-4, Mar. 2018. Article (CrossRef Link) 

[25] A. Ebra and M. Maier, “Distributed cooperative computation offloading in multi-access edge 
computing fiber-wireless networks” Optics Communications, vol. 452, pp. 130-139, Dec. 2019. 
Article (CrossRef Link) 

[26] L. Liu, M. Zhao, M. A. Jan, A. Tah, “Mobility-Aware Multi-Hop Task Offloading for Autonomous 
Driving in Vehicular Edge Computing and Networks,” IEEE Transactions on Intelligent 
Transportation Systems, pp. 1-14, Jan. 2022. Article (CrossRef Link) 

[27] M. Sal, P. Fan, G. Liu, “A cluster-based cooperative computation offloading scheme for C-V2X 
networks,” Ad Hoc Networks., vol. 132, pp. 1-12, Apr. 2022. Article (CrossRef Link) 

[28] J. Zjao, Q. Li, Y. Gong, K. Zhang, “Computation offloading and resource allocation for cloud 
assisted mobile edge computing in vehicular networks,”  IEEE Transactions on Vehicular 
Technology, vol. 68, pp.7944-7956, Jun. 2019. Article (CrossRef Link) 

[29] H. Guo, J. Zhang, J. Liu, “Fiwi-enhanced vehicular edge computing networks: Collaborative task 
offloading,”  IEEE Vehicular Technology Magazine., vol. 14, pp.45-53, Mar. 2019.  
Article (CrossRef Link) 

[30] Z. Hong, W. Chen, H. Huang, S. Guo, Z. Zheng, “Multi-hop cooperative computation offloading 
for industrial IoT–edge–cloud computing environments,”  IEEE Transactions on Parallel and 
Distributed Systems, vol. 30, pp. 2759-2774, Jul. 2019. Article (CrossRef Link) 

[31] K. Zhang, Y. Mao, S. Leng, Y. He and Y. ZHANG, “Mobile-Edge Computing for Vehicular 
Networks: A Promising Network Paradigm with Predictive Off-Loading,” IEEE Vehicular 
Technology Magazine, vol. 12, no. 2, pp. 36-44, Apr. 2017. Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 

Xi Hu received the B.Eng. degree in Electronic Information Science and Technology from 
Liaoning University, Shenyang, China, in 2003, the M.S. and Ph.D. degrees in 
Communication and Information System from Northeastern University, Shenyang, China, in 
2008 and 2011, respectively. He is currently an associate professor with Computer Center, 
Northeastern University at Qinhuangdao, Hebei, China. His current research interests include 
intelligent transportation systems, Internet of vehicles, edge/fog computing, and edge 
intelligence. 
 
 

 
Yicheng Zhao received the B.Eng. degree in School of Physics and Optoelectronic 
Engineering from Weifang University, China, in 2020. He is currently pursuing the Master 
degree with the School of Computer and Communication Engineering, Northeastern 
University at Qinhuangdao, Hebei 066004, China. His current research interests include 
Internet of vehicles and resource scheduling based on resource cluster. 
 
 
 
 

 

http://doi.org/doi:10.1109/ACCESS.2020.2981045
https://ieeexplore.ieee.org/xpl/conhome/8301388/proceeding
http://doi.org/doi:10.1109/VCIP.2017.8305121
https://doi.org/10.1016/j.optcom.2019.06.060
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979
http://doi.org/doi:10.1109/TITS.2022.3142566
http://www.sciencedirect.com/science/article/pii/S1570870522000622
http://www.sciencedirect.com/science/article/pii/S1570870522000622
https://doi.org/10.1016/j.adhoc.2022.102862
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=25
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=25
http://doi.org/10.1109/TVT.2019.2917890
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10209
http://doi.org/10.1109/MVT.2018.2879537
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://doi.org/10.1109/TPDS.2019.2926979
http://doi.org/doi:10.1109/MVT.2017.2668838


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 11, November 2022                  3657 

Yang Huang received the B.Eng. degree in School of Electronic Information Engineering 
from Anhui Polytechnic University, China, in 2019. He is pursuing the Master degree with 
the School of Computer and Communication Engineering, Northeastern University at 
Qinhuangdao, Hebei 066004, China. His current research interests include mobile edge 
computing and deep learning. 
 
 
 
 

 
Chen Zhu received the B.Eng. degree in School of Electrical and Information Engineering, 
Anhui University of Technology, China, in 2019. He is currently pursuing the Master degree 
with the School of Computer and Communication Engineering, Northeastern University at 
Qinhuangdao, Hebei 066004, China. His current research interests include Internet of 
vehicles and load balancing. 
 
 
 
 

 
Jun Yao received the B.Eng. degree in School of Electronic Information Engineering from 
Anhui Polytechnic University, China, in 2021. He is pursuing the Master degree with the 
School of Computer and Communication Engineering, Northeastern University at 
Qinhuangdao, Hebei 066004, China. His current research interests include mobile edge 
computing and deep learning. 
 
 
 
 

 
NaNa Fang received the B.Eng. degree in School of Electronic Information Engineering 
from Anhui Polytechnic University, China, in 2021. He is pursuing the Master degree with 
the School of Computer and Communication Engineering, Northeastern University at 
Qinhuangdao, Hebei 066004, China. His current research interests include mobile edge 
computing. 


