Only a few studies have been conducted on how to select multiple classifiers from the pool of available classifiers for showing the good classification performance. Thus, the selection problem if classifiers on how to select or how many to select still remains an important research issue. In this paper, provided that the number of selected classifiers is constrained in advance, a variety of selection criteria are proposed and applied to tile construction of multiple classifier systems, and then these selection criteria will be evaluated by the performance of the constructed multiple classifier systems. All the possible sets of classifiers are trammed by the selection criteria, and some of these sets are selected as the candidates of multiple classifier systems. The multiple classifier system candidates were evaluated by the experiments recognizing unconstrained handwritten numerals obtained both from Concordia university and UCI machine learning repository. Among the selection criteria, particularly the multiple classifier system candidates by the information-theoretic selection criteria based on conditional entropy showed more promising results than those by the other selection criteria.
A multiple classification system based on a new boosting technique has been approached utilizing different biometric traits, that is, color face, iris and eye along with fingerprints of right and left hands, handwriting, palm-print, gait (silhouettes) and wrist-vein for person authentication. The images of different biometric traits were taken from different standard databases such as FEI, UTIRIS, CASIA, IAM and CIE. This system is comprised of three different super-classifiers to individually perform person identification. The individual classifiers corresponding to each super-classifier in their turn identify different biometric features and their conclusions are integrated together in their respective super-classifiers. The decisions from individual super-classifiers are integrated together through a mega-super-classifier to perform the final conclusion using programming based boosting. The mega-super-classifier system using different super-classifiers in a compact form is more reliable than single classifier or even single super-classifier system. The system has been evaluated with accuracy, precision, recall and F-score metrics through holdout method and confusion matrix for each of the single classifiers, super-classifiers and finally the mega-super-classifier. The different performance evaluations are appreciable. Also the learning and the recognition time is fairly reasonable. Thereby making the system is efficient and effective.
The study on combining multiple classifiers in the field of pattern recognition has mainly focused on how to combine multiple classifiers, but it has gradually turned to the study on how to select multiple classifiers from a classifier pool recently. Actually, the performance of multiple classifier system depends on the selected classifiers as well as the combination method of classifiers. Therefore, it is necessary to select a classifier set showing good performance, and an approach based on information theory has been tried to select the classifier set. In this paper, a classifier set candidate is made by the selection of classifiers, on the basis of mutual information between classifiers, and the classifier set candidate is compared with the other classifier sets chosen by the different selection methods in experiments.
In this paper, we propose a multiple classifier combination method based on image degradation modeling to improve recognition performance on low-quality images. Using an image degradation model, it generates a set of classifiers each of which is specialized for a specific image quality. In recognition, it combines the results of the recognizers by weighted averaging to decide the final result. At this time, the weight of each recognizer is dynamically decided from the estimated quality of the input image. It assigns large weight to the recognizer specialized to the estimated quality of the input image, but small weight to other recognizers. As the result, it can effectively adapt to image quality variation. Moreover, being a multiple-classifier system, it shows more reliable performance then the single-classifier system on low-quality images. In the experiment, the proposed multiple-classifier combination method achieved higher recognition rate than multiple-classifier combination systems not considering the image quality or single classifier systems considering the image quality.
This paper proposes a multiple classifier system having massive micro classifiers. The micro classifiers are trained by using a local set of training patterns. The k nearest neighboring training patterns of one training pattern comprise the local region for training a micro classifier. Each training pattern is incorporated with one or more micro classifiers. Two types of micro classifiers are adapted in this paper. SVM with linear kernel and SVM with RBF kernel. Classification is done by selecting the best micro classifier among the micro classifiers in vicinity of incoming test pattern. To measure the goodness of each micro classifier, the weighted sum of correctly classified training patterns in vicinity of the test pattern is used. Experiments have been done on Elena database. Results show that the proposed method gives better classification accuracy than any conventional classifiers like SVM, k-NN and the conventional classifier combination/selection scheme.
In this paper, we propose the bootstrap and aggregating (bagging) vector quantization (VQ) classifier to improve the performance of the text-independent speaker recognition system. This method generates multiple training data sets by resampling the original training data set, constructs the corresponding VQ classifiers, and then integrates the multiple VQ classifiers into a single classifier by voting. The bagging method has been proven to greatly improve the performance of unstable classifiers. Through two different experiments, this paper shows that the VQ classifier is unstable. In one of these experiments, the bias and variance of a VQ classifier are computed with a waveform database. The variance of the VQ classifier is compared with that of the classification and regression tree (CART) classifier[1]. The variance of the VQ classifier is shown to be as large as that of the CART classifier. The other experiment involves speaker recognition. The speaker recognition rates vary significantly by the minor changes in the training data set. The speaker recognition experiments involving a closed set, text-independent and speaker identification are performed with the TIMIT database to compare the performance of the bagging VQ classifier with that of the conventional VQ classifier. The bagging VQ classifier yields improved performance over the conventional VQ classifier. It also outperforms the conventional VQ classifier in small training data set problems.
Combining multiple classifiers to obtain improved performance over the individual classifier has been a widely used technique. The task of constructing a multiple classifier system(MCS) contains two different Issues how to generate a diverse set of base-level classifiers and how to combine their predictions. In this paper, we review the characteristics of existing multiple classifier systems : Bagging, Boosting, and Slaking. For document classification, we propose new MCSs such as Stacked Bagging, Stacked Boosting, Bagged Stacking, Boosted Stacking. These MCSs are a sort of hybrid MCSs that combine advantages of existing MCSs such as Bugging, Boosting, and Stacking. We conducted some experiments of document classification to evaluate the performances of the proposed schemes on MEDLINE, Usenet news, and Web document collections. The result of experiments demonstrate the superiority of our hybrid MCSs over the existing ones.
Combining multiple classifiers to obtain improved performance over the individual classifier has been a widely used technique. The task of constructing a multiple classifier system(MCS) contains two different issues : how to generate a diverse set of base-level classifiers and how to combine their predictions. In this paper, we review the characteristics of the existing multiple classifier systems: bagging, boosting, and stacking. And then we propose new MCSs: stacked bagging, stacked boosting, bagged stacking, and boasted stacking. These MCSs are a sort of hybrid MCSs that combine advantageous characteristics of the existing ones. In order to evaluate the performance of the proposed schemes, we conducted experiments with nine different real-world datasets from UCI KDD archive. The result of experiments showed the superiority of our hybrid MCSs, especially bagged stacking and boosted stacking, over the existing ones.
Journal of Institute of Control, Robotics and Systems
/
v.3
no.3
/
pp.244-251
/
1997
In this paper, we propose a fault diagnosis algorithm to detect and isolate multiple faults in a system. The proposed fault diagnosis algorithm is based on a multiple fault classifier which consists of two ART2 NN(adaptive resonance theory2 neural network) modules and the algorithm is composed of three main parts - parameter estimation, fault detection and isolation. When a change in the system occurs, estimated parameters go through a transition zone in which residuals between the system output and the estimated output cross the threshold, and in this zone, estimated parameters are transferred to the multiple faults classifier for fault isolation. From the computer simulation results, it is verified that when the proposed diagnosis algorithm is performed successfully, it detects and isolates faults in the position control system of a DC motor.
IEMEK Journal of Embedded Systems and Applications
/
v.10
no.4
/
pp.213-219
/
2015
Real-time energy monitoring systems is a demand-response system which is reported to be effective in saving energy up to 12%. Real-time energy monitoring system is commonly composed of smart-plugs which sense how much electrical power is consumed and IHD(In-Home Display device) which displays power consumption patterns. Even though the monitoring system is effective, users should themselves match which smart plus is connected to which appliance. In order to make the matching work to be automatic, the monitoring system need to have appliance identification algorithm, and some works have made under the name of NILM(Non-Intrusive Load Monitoring). This paper proposed an algorithm which utilizes multiple classifiers to improve accuracy of appliance identification. The algorithm proposes to understand each classifiers performance, that is, when a classifier make a result how much the result is reliable, and utilize it in choosing the final result among result candidates from many classifiers. By using the proposed algorithm this paper make 4.5% of improved accuracy with respect to using single best classifier, and 2.9% of improved accuracy with respect to other method using multiple classifiers, so called CDM(Commitee Decision Mechanism) method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.