• Title/Summary/Keyword: multiple bars

Search Result 60, Processing Time 0.021 seconds

Dynamic Characteristics of Multiple Bars in the Channels with Erodible Banks (하안침식을 고려한 복렬사주의 동적 거동 특성 분석)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • In this study, the development processes of multiple bars in the channels with erodible banks were investigated by double Fourier analysis. The initially straight channels in the experiment flume were widened with eroding the side banks, and the multiple bars were generated and grew due to stalling of the sediment on the bed. The bars migrated downstream and the size of the bars increased with time. The flow was separated around the bars, and the bed and banks near the bars were scoured due to the impinged secondary flow. The morphologic changes were accelerated by the bank erosion, which affected the fluctuations of sediment discharge downstream. The double Fourier analysis of the bed waves showed that 1-1 mode (alternate bar) was dominant at the initial stage of the channel development. As time increased, 2-3 mode (central or multiple bars) was dominant due to the increased width to depth ratio. Moreover, the number of bars in a cross section of the channel were increased due to the non linearity of alternate bars. The width to depth ratio was increased by the bank erosion, which affected the bar migration and the bar wavelength. However, the dimensionless tractive force was decreased by it.

Test of Headed Reinforcement in Pullout II: Deep Embedment

  • Choi, Dong-Uk
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.151-159
    • /
    • 2006
  • A total of 32 pullout tests were performed for the multiple headed bars relatively deeply embedded in reinforced concrete column-like members. The objective was to determine the minimum embedment depth that was necessary to safely design exterior beam-column joints using headed bars. The variables for the experiment were embedment depth of headed bar, center-to-center distance between adjacent heads, and amount of supplementary reinforcement. Regular strength concrete and grade SD420 reinforcing steel were used. The results of the test the indicated that a headed bar embedment depth of $10d_b$ was not sufficient to have relatively closely installed headed bars develop the pullout strength corresponding to the yield strength. All the experimental variables, influenced the pullout strength. The pullout strength increased with increasing embedment depth and head-to-head distance. It also increased with increasing amount of supplementary reinforcement. For a group of closely-spaced headed bars installed in a beam-column joint, it is recommended to use column ties at least 0.6% by volume, 1% or greater amount of column main bars, and an embedment depth of $13d_b$ or greater simultaneously, to guarantee the pullout strength of individual headed bars over 125% of $f_y$ and ductile load-displacement behavior.

Locating Reinforcing Bars in Concrete Structures Using Generalized Hough Transform of Radar Image (일반화 Hough변환을 응용한 콘크리트 레이더 화상 내 실제 철근위치의 검출 해석)

  • ;魚本健人
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 2000
  • Locating reinforcing bars, in particular to know their accurate depths, is very important in radar inspection of concrete structures. By the way, an accurate depth estimation of reinforcing bars in concrete structures by the radar is not easy because the microwave propagation velocity in test area is generally unknown. This problem can be solved by generalized Hough transformation technique. Using this technique, the microwave propagation velocity in test area can be detected from the radar image, which appear as hyperbolas conveying the velocity information in their shape. A developed speed-up technique for the computation of the Generalized Hough transformation is also investigated in this study. As a result, although it becomes difficult to locate reinforcing bars when multiple parallel bars lying too close together, there is a possibility of detecting accurate depths of reinforcing bars in test area by the proposed method

Pullout Test of Headed Reinforcement 2: Deep Embedment

  • Choi, Dong Uk;Shin, InYong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1091-1096
    • /
    • 2003
  • Pullout tests of single headed bars using plain concrete blocks indicate that the embedment depth of $10d_b$ is in general required for the headed bars to develop pullout strength equivalent to 125% of bar yield strength. In this experimental study, test results of multiple headed bars installed in reinforced concrete column sections are presented. Test variables included embedment depth, column main reinforcement ratio, and spacing of column ties. 2D29 bars were pulled out at one time from normal strength concrete. Test results indicated that the embedment depths, column tie spacings, and column main reinforcement ratios all influenced the pullout strengths of the headed bars. When the embedment depth was not sufficient, narrow tie spacings especially resulted in increased pullout strengths of the headed bars. Test results also indicated that the embedment depth of 15㏈ was sufficient for the closely spaced two headed bars (head-to-head spacing =$6d_b$) to develop pullout strength equivalent to 125% of the bar yield strength.

  • PDF

Monolith and Partition Schemes with LDA and Neural Networks as Detector Units for Induction Motor Broken Rotor Bar Fault Detection

  • Ayhan Bulent;Chow Mo-Yuen;Song Myung-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Broken rotor bars in induction motors can be detected by monitoring any abnormality of the spectrum amplitudes at certain frequencies in the motor current spectrum. Broken rotor bar fault detection schemes should rely on multiple signatures in order to overcome or reduce the effect of any misinterpretation of the signatures that are obscured by factors such as measurement noises and different load conditions. Multiple Discriminant Analysis (MDA) and Artificial Neural Networks (ANN) provide appropriate environments to develop such fault detection schemes because of their multi-input processing capabilities. This paper describes two fault detection schemes for broken rotor bar fault detection with multiple signature processing, and demonstrates that multiple signature processing is more efficient than single signature processing.

Rader Image Processing for Locating of Reinforcing bars in Concrete (콘크리트내 철근위치검출을 위한 레이더화상처리기술)

  • 박석균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.807-812
    • /
    • 1999
  • Locating of reinforcing bars, in particular to know their accurate depths, is very important thing in radar inspection of concrete structures. By the way, a depth estimation of reinforcing bars in concrete structures by the radar is not easy because micorwave propagation velocity in test area is generally unknown. This problem can be solved by Generalized Hough transformation technique. Using this technique, the micorwave propagation velocity in test area can be detected from the radar image, which appear as hyperbolas conveying the velocity information in their shape. A developed speed-up technique for the computation of the Generalized Hough transformation is also investigated in this study. As a result, although it becomes difficult to locate reinforcing bars when multiple parallel bars lying too close together, there is a possibility of detecting accurate depths of reinforcing bars in test area by the proposed method.

  • PDF

Numerical Simulation of Sand Bars downstream of Andong Dam (안동댐 하류 하천에서 사주의 재현 모의)

  • Jang, Chang-Lae;Shimizu, Yasuyuki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.379-388
    • /
    • 2010
  • This study examined the physical effects on the river changes downstream of Andong dam and simulated the reproduction of sand bars and the geomorphic changes numerically. The river bed downstream of Aandong dam and Imha dam was decreased and the mean diameter of bed materials was increased, and the number of lower channels was increased. The vegetated area was slightly increased after Andong dam construction. Moreover, the area was abruptly increased after Imha dam construction. The bankfull discharges was estimated to 580 $m^3/s$ after the dams construction and 2,857 $m^3/s$ before the dams. A flood mitigation safety by the dams construction considering return period was increased to 5 to 10 times. As a result of meso-scale regime analysis by using banfull discharge, the regime between single bars and multiple row bars before the dams construction was changed to completely the regime of multiple row bars after the dams. The numerical simulation results showed that the sand bars and lower channels were developed before the dams, and braided river was developed after the dams. This meant that the patterns of sand bars was changed by variable discharge due to the dams construction.

Numerical Analysis of the Behavior of Bars in a Compound Channel with a Drop Structure (낙차공이 있는 복단면 수로에서 사주거동의 수치분석)

  • Kim, Gi-Jung;Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.14-21
    • /
    • 2016
  • This study investigated the behavior of sediment bars in a compound channel with a drop structure. Flow was separated into side banks by alternate bars, and flow was concentrated into the downstream of bar fronts. The bed downstream of a drop structure degradated due to the concentrated flow from it. Bar shapes were kept by the influence of their shapes upstream. Alternate bars, central bars, and multiple bars were developed as the width to depth ratio increased, and the number of bars increased. The bar in the downstream of a drop structure decreased in length due to the concentration of flow and its disturbance.

Test of Headed Reinforcement in Pullout

  • Park, Dong-Uk;Hong, Sung-Gul;Lee, Chin-Yong
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.102-110
    • /
    • 2002
  • Results of an experimental study on the pullout behavior of the headed reinforcement are presented. A total of 48 pullout tests was performed to evaluate pullout strengths and load-displacement behaviors in pullout of the headed bars. The square steel heads had gross area of 4 $A_{b}$ and thickness of $d_{b}$ The test program consisted of three pullout test groups: Simple and Edge pullout tests using plain concrete slabs, comparison of pullout performances between the standard hooks and the headed reinforcement, and pullout tests of headed reinforcement using reinforced concrete columns. Test variables included concrete strengths ( $f_{c}$' = 27.1MPa, 39.1MPa), reinforcing bar diameters (D16~D29), embedment depths (6 $d_{b}$~12 $d_{b}$), edge conditions, column reinforcement, and single-vs.-multiple bar pullout. Test results revealed that the heads effectively provided the pullout resistances of the deformed bars in tension. The load-displacement behaviors were similar between the 90-degree hooks and the headed reinforcement. When a multiple number of headed bars installed with small head-to-head spacings was pulled out, reinforcement designed to run across the concrete failure surface in a direction parallel to the headed bars helped improve the pullout performances of the headed reinforcement.t.ement.t.

  • PDF

An exact solution for free vibrations of a non-uniform beam carrying multiple elastic-supported rigid bars

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.399-416
    • /
    • 2010
  • The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of a multi-step beam carrying multiple rigid bars, with each of the rigid bars possessing its own mass and rotary inertia, fixed to the beam at one point and supported by a translational spring and/or a rotational spring at another point. Where the fixed point of each rigid bar with the beam does not coincide with the center of gravity the rigid bar or the supporting point of the springs. The effects of the distance between the "fixed point" of each rigid bar and its center of gravity (i.e., eccentricity), and the distance between the "fixed point" and each linear spring (i.e., offset) are studied. For a beam carrying multiple various concentrated elements, the magnitude of each lumped mass and stiffness of each linear spring are the well-known key parameters affecting the free vibration characteristics of the (loaded) beam in the existing literature, however, the numerical results of this paper reveal that the eccentricity of each rigid bar and the offset of each linear spring are also the predominant parameters.